

Eng. Maha Moddather mahamoddather@eng.cu.edu.eg

Concrete Beam subjected to Bending Moment around Major Axis

If M_x increases → increase d or A_s

Concrete Beam subjected to Bending Moment around Major Axis

If d is limited & $A_s = A_{smax}$ \rightarrow Use Compression reinforcement

Concrete Beam subjected to Bending Moment around Major Axis

I-Beam Section → usually used for beams and columns in steel structures

Types of Buildings with respect to Construction Materials

Timber Building

Concrete Building

Types of Buildings with respect to Construction Materials

Combined Steel-Concrete Building

Steel Building

Typical Steel Structures

Industrial Buildings

Typical Steel Structures

Hybernia platform (Grand banks, NL) topsides are steel

Multi-storey Bldgs.

Sea Platform

Typical Steel Structures

Skyscrapers

We will study Industrial Buildings this year

Steel Frame

Steel Truss

- □ Advantages of Steel:
 - > Economy
 - > Durability
 - Design Flexibility
 - > All Weather Construction
 - > Easy Repair
 - > 100% Recyclable

Course Outline

- □ Components of Structures and General Layout
- □ Bracing Systems
- □Dead & Live Loads
- □ Crane & Wind Loads
- □ Tension Members
- □ Compression Members

Course Outline

- □Bracing Members
- □ Axially Loaded Columns
- □Beams:
 - > Purlins & Side Girts
 - > CTG & Monorail
 - > Floor Beams
- □Beams Columns

□ Steel Sections

General Layout

- 1. Types of Main Systems
- 2. Arrangement of Main Systems
- 3. Roof Slope
- 4. Roof Covering Materials
- 5. Side Cover
- 6. End Gables
- 7. Bracing System

1. Types of Main Systems Systems Rigid Simple Simple Column Truss Frame Beam Truss Frame Dr. Maha Moddather

Main System

3. Roof Slope

* To accommodate rain water drainage.

♦ Slope 1: 5 **→** 1: 15

3. Roof Slope

❖ Slope can reach values equal to: (1:1) in case of bulk material storage.

4. Roof Covering Materials

4. Roof Covering Materials **Covering Material** Flexible Cover Rigid Cover Sandwich Precast Corrugated R.C. slab Units **Panels** Sheets Glue

4. Roof Covering Materials

Dr. Maha Moddather

4. Roof Covering Materials **Covering Material** Flexible Cover Rigid Cover Sandwich Precast Corrugated R.C. slab Units Panels Sheets

4. Roof Covering Materials

4. Roof Covering Materials

4. Roof Covering Materials -a = 2 mCorrugated Sheets S = 6 m60 m Clear Height Secondary =7mBeams **Purlins** 20 m 20 m Dr. Maha Moddather

4. Roof Covering Materials

4. Roof Covering Materials Purlin -**Roof Cover** Rafter a = 2 mRefers to the horizontal Column distance **Top Chord** Roof Cover Purlin -20 m Diagonals Verticals **Purlins should be at Truss** Bottom Joints Chord Column В

4. Roof Covering Materials Purlin -Roof Cover Rafter a = 2 mRefers to the horizontal Column distance Roof Cover Purlin -20 m Purlins should be at Truss Joints Column $h \ge 1 m$ В

4. Roof Covering Materials

5. Side Cover

Corrugated Sheets

Brick Walls

Dr. Maha Moddather

5. Side Cover

5. Side Cover

□ Add End Gable Columns with spacing 4 – 6 m

□ Add End Gable Columns with spacing 4 – 6 m

5 m

5 <u>m</u>

☐ Use Side Girts at distance $\leq 2.0 \text{ m}$ **Roof Cover** Purlin Rafter Side Girt Side Cover Side a' ≤ 2 m Girt End Gable Brick Column -Wall Column 1.5 - 3.0 m

5 m

20 m

5 m

Dr. Maha Moddather

☐ For trusses: End Gable Columns at truss Joints

☐ Access Doors

☐ <u>Types of Doors</u>

Roller Shutter Door

☐ Bracing system is provided to frames to provide stability under the lateral loads.

Frame can support loads in the lateral direction

☐ Bracing system is provided to frames to provide stability under the lateral loads.

Dr. Maha Moddather

☐ Bracing System includes:

➤ Horizontal Bracing:

Bracing in a horizontal plane provides a load path to transfer the horizontal forces (wind pressure on the cladding) to the planes of vertical bracing.

➤ Vertical Bracing
Bracing in vertical planes
(between lines of columns)
provides load paths to transfer
horizontal forces to ground
level.

Horizontal Bracing

Vertical Bracing

- > Use Bracing at the First and last bays.
- ➤ Use bracing at intermediate bays, if length > 40 m.

Assignment

- ☐ Prepare a General Layout Drawing (Using Ao sheet):
 - **Roof Plan:**
 - **✓** Arrangement of Main System.
 - **✓** Arrangement of Purlins.
 - **✓** Horizontal Bracing.
 - **✓ End Gable Columns**
 - **➤ Main System Elevation.**
 - **End Gable Elevation.**
 - > Side view for Vertical Bracing/ Side Girts.