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Torque Diagram and Torsional Stress of Circular Section 

Torsional or twisting moment is caused by forces whose resultant does not pass through the axis of rotation 

(called the shear center) of the structural member. Typically, significant torsions are induced in shafts of 

rotating motors, structural members subjected to eccentric loading (e.g., edge beams) or curved in the 

horizontal plane (e.g., curved bridges, helical stairs).  

 
Torque Diagram 

 

 

 

 
 

 

 

 

 

Case 1: T1 (k )    Case 2: T2 (k )      Case 3: T3 (k ) 
 

 

 

 

 

 

 

Torsion of Circular and Tubular Section 

Unlike other sections (e.g., rectangular, thin-walled), the behavior of circular or tubular sections due to 

torsional moment is well represented by some familiar simplifying assumptions; i.e., plane sections remain 

plane when torsional moment is applied (i.e., no warping deformations), shear strains are small (as are shear 

stesses if Hookeôs law is valid) and vary linearly from the center of the section.   

 

  

  

 

 

 

 

 

 

 

 

 

 

Example: Considering the torque diagram T1 corresponding to Case 1 shown above, calculate the maximum 

torsional shear stress for (a) a solid circular section of 4  diameter, (b) a tubular section of 4 outside 

diameter and 3 inside diameter.  

(c) Calculate the required diameter of a solid circular section if the allowable shear stress is 10 ksi. 

  

 

(a) Since T max = 15 k = 180 k ,  max = 16 180/ (4)
3
 = 14.32 ksi 

(b)  max = 180 (4/2)/( {(4)
4

(3)
4
}/32) = 20.95 ksi 

(c)  max = 16 180/ d
3
 = 10 ksi  d = 4.51  
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Using these assumptions, the shear stress at any distance  from the center 

of the circle is  = max /c      é.éééééééé.(i) 

Shear force acting on a small differential area dA is 

dF =  dA = ( max /c) dA    é.éééééééé.(ii) 

Corresponding torsional moment, dT =  dF = ( max 
2
/c) dA  éé..é(iii) 

Total torsional moment integrated over the entire circular area is  

T = ( max 
2
/c) dA = max J/c  max = Tc/J éééé.ééééé.(iv) 

where J = Polar moment of inertia of the section. 

For a solid circular section of diameter d, J = d
4
/32 

Eq. (iv) can be simplified as max = T(d/2)/( d
4
/32) = 16T/ d

3
 ééé...(v) 

4  

4  3  
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Torsional Rotation of Circular Section 

Calculation of torsional rotation is necessary to 

1. design structures not only to be strong enough (to withstand torsional stress), but also stiff enough (i.e., 

they should not deform too much due to torsional moments), 

2. design machineries for torsional vibrations,  

3. analyze statically indeterminate structures. 

 

Torsional Rotation of Circular and Tubular Section 

The assumptions used to derive the equation for torsional shear stress of circular sections are valid here also; 

i.e., plane sections remain plane due to torsional moment, shear strains (as well as stresses if Hookeôs law is 

valid) are small and vary linearly from the center of the section.   

  

  

 

 

 

 

 

 

 

 

where  is integration between sections A and B.  

If T, J and G are uniform between A and B, then B  A = (TL/JG)  ééééé.(v) 

 

Example: Considering the torque diagram shown below, calculate the torsional rotations for  

(a) a tubular section of 4 outside diameter and 3 inside diameter.  

(b) Calculate the required diameter of a solid circular section if the allowable torsional rotation is 1  

[Given: G = 12000 ksi]. 

 

 

 

 

 

 

 

(a) The polar moment of inertia of the tubular section is J = {(4)
4

(3)
4
}/32 = 17.18 in

4 

D  C = (TL/JG)CD = (15  12)  (6  12)/(17.18 12000) = 0.0629 rad  C = 0.0629 rad = 3.60  

   C  B = (TL/JG)BC = (5  12)  (5  12)/(17.18 12000) = 0.0175 rad  B = 0.0803 rad = 4.60  

   B  A = (TL/JG)AB = (10  12)  (4  12)/(17.18 12000) = 0.0279 rad  A = 0.1083 rad = 6.21  

 

(b) Using D = 0, the maximum torsional rotation at point A is 
 

     A =  [(TL/JG)CD + (TL/JG)BC + (TL/JG)AB]  

      /180 =  [(15  12)  (6  12) + (5  12)  (5  12) + (10  12)  (4  12)]/(J 12000) = 1.86/J  

      J = d
4
/32 = 106.57 in

4
  d = 5.74 

 

 

 

 

T (k ) 
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M
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d  

For a cylindrical segment of differential length dx, the length of the arc MN 

is given by ds = max dx        é.éééééééé.(i) 

It can also be expressed in terms of the differential angular rotation d, i.e.,  

           ds = c d       é.éééééééé.(ii) 

where c = radius of the circular area. 

Combining Eq. (i) and (ii)  c d  = max dx = ( max/G) dx 

Using max = Tc/J  c d  = (Tc/JG) dx  d  = (T/JG) dx      ééé..é(iii) 

where J = Polar moment of inertia of the section.  

Integrating between sections A and B  B  A = (T/JG) dx  ééé.(iv) 
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Torsion of Closed Thin-Walled Sections 

Thin-walled sections have wall thickness much smaller than its other dimensions. Closed thin-walled 

sections are widely used in structures subjected to torsional moments because compared to other sections, 

they can resist torsional stress and deformations more efficiently.  

 

Torsional Stress and Rotation of Thin-Walled Section 

Thin-walled sections can be analyzed for torsion using somewhat similar assumptions as for circular 

sections; i.e., plane sections remain plane, shear strains are small. However, since the thickness of the 

section is very small, the shear stresses remain almost constant across the thickness instead of varying 

linearly from the center of rotation. 

  

  

 

 

 

 

 

 

 

 

 

Also, the external energy required by a torque T to cause a twisting rotation d is = T d /2  éééé.(iv) 

while the corresponding internal energy is = 
2
/2G dV = (T

2
/8      

2
t
2
G) (dx t ds)  

   = (T
2
 dx /8      

2
G)( ds/t)   .ééé.é...(v) 

Eq. (iv) and (v)  d /dx = (T/4      
2 
G)( ds/t); i.e., Jeq = 4      

2
/( ds/t)              .ééé.é...(vi) 

 

Example: Considering the torque diagram shown below, calculate the maximum shear stress and torsional 

rotation for a 4  4  hollow square section with 0.5 wall thickness [Given: G = 12000 ksi]. 

 

 

 

 

 

 

 

The enclosed area       = 3.5  3.5  = 12.25 in
2
 
 

max = T/(2      t) = (15  12)/(2  12.25  0.5) = 14.69 ksi   

Also Jeq = 4     
2
/ ds/t = 4(12.25)

2
/(4  3.5/0.5) = 21.44 in

4
 

   D  C = (TL/JG)CD = (15  12)  (6  12)/(21.44 12000) = 0.0503 rad  C = 0.0503 rad = 2.89  

   C  B = (TL/JG)BC = (5  12)  (5  12)/(21.44 12000) = 0.0140 rad  B = 0.0644 rad = 3.69  

   B  A = (TL/JG)AB = (10  12)  (4  12)/(21.44 12000) = 0.0224 rad  A = 0.0868 rad =  4.97  

 

T (k ) 

But the shear stress does not remain constant throughout the perimeter of the 

section. Instead the shear flow q, which is the shear force per unit length 

(given by shear stress óô times the wall thickness ótô; i.e., q =  t) is 

constant.  

Shear force on a small element of length ds is dF = q ds éé..ééé...(i) 

and the corresponding torque dT = r dF = q r ds   éééééé.(ii) 

Since the area of the small triangular area subtended at the center of rotation 

is = ½ rds, integrating rds over the perimeter of the area will give twice the 

entire area enclosed by the section [i.e., 2       ]. 

Total torque T =  dT = q r ds = q 2         = q/t =  T/(2      t)   éé..(iii) 
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Torsion of Rectangular Sections 

Since a majority of civil engineering structures consist of rectangular or assembly of rectangular sections, 

the study of torsional behavior of such sections is important. However, when subjected to torsional moment, 

rectangular sections do not behave like circular or thin-walled sections, due to the warping deformations 

accompanying their response.  

 

Torsional Stress and Rotation of Rectangular Section 

The torsional response of these sections cannot be derived using the simple methods of Strength of 

Materials, and requires concepts of Theory of Elasticity instead, which is beyond the scope of this course. 

Therefore, only the final expressions for torsional stress and rotation are shown here.  

  

  

 

 

 

 

 

 

 

 

b/t 1.0 1.5 2.0 3.0 6.0 10.0  

 0.208 0.231 0.246 0.267 0.299 0.312 0.333 

 0.141 0.196 0.229 0.263 0.299 0.312 0.333 

 

Example: Considering the torque diagram shown below, calculate the maximum shear stress and torsional 

rotation for a (a) 4  4  solid section (b) 4  4  0.5  open section [Given: G = 12000 ksi]. 

 

 

 

 

 

 

 

(a) For the 4  4  solid section,  = 0.208,  = 0.141
 

max = T/( bt
2
) =  (15  12)/(0.208  4  4

2
) = 13.52 ksi   

Also Jeq = bt
3 
= 0.141  4  4

3
 = 36.10 in

4
 

   D  A = {(15 12) (6 12) + (5 12) (5 12) + (10 12) (4 12)}/(36.10 12000) = 0.0515 rad  

   A = 0.0515 rad = 2.95  

 

(b) The 4  4  0.5  open section is torsionally equivalent to a rectangular section of size 16 0.5  

b/t = 32  Both  and  can be assumed to be  0.333
 

max = T/( bt
2
) = (15  12)/(0.333  16  0.5

2
) = 135 ksi 

Jeq =  bt
3 
= 0.333  16  0.5

3
 = 0.667 in

4
 

   D  A = {(15 12)  (6 12) + (5 12)  (5 12) + (10 12)  (4 12)}/(0.667  12000) = 2.79 rad  

   A = 2.79 rad = 160  

Obviously, common structural materials cannot survive such a large shear stress and angular rotation.  

T (k ) 

For a (b t) rectangular section (with b  t) subjected to torsional moment T, 

the maximum shear stress max = T/( bt
2
)            .é..ééé...(i) 

and the óequivalent polar moment of inertiaô for torsional rotation is  

Jeq = bt
3
        éé..ééé...(ii) 

Torsional rotation for a uniform section of length L is   

 = TL/( bt
3
)G     éé..ééé..(iii) 

The constants  and  in Eqs. (i) and (ii) are non-dimensional parameters 

and depend on the ratio b/t, as shown in the following table. 
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Distributed Torsion and Torsional Rotation 

Since the loads on civil engineering (or other) structures are often distributed over a length or over an area, 

torsional moments on such structures seldom work as concentrated at one section. The torque diagram and 

calculation of torsional rotation in such cases require special attention. 

 

Distributed Torsion 

 

 

 

 
 

 

 

 

Case 1: T1 (k )           Case 2: T2 (k ) 
 

 

 

 

 

 

 

 

Example: Considering the torque diagrams shown above, calculate the maximum torsional rotation for a 

solid circular section of 4-diameter [Given: G = 12000 ksi]. 

 

The polar moment of inertia of the circular section is J = (4)
4
/32 = 25.13 in

4 

Using D = 0, the maximum torsional rotation at point A is 
 

(a) A =  [(TL/JG)CD + BC(T/JG) dx + (TL/JG)AB] 

          =  [(15  12)  (6  12) + {(10 +15)/2  12}  (5  12) +(10  12)  (4  12)]/(25.13 12000)  

          = 0.0919 rad = 5.27  

 

(b) A =  [(TL/JG)CD + BC(T/JG) dx + (TL/JG)AB] 

          =  [(15  12)  (6  12) + {(10 +5/3)  12}  (5  12) +(10  12)  (4  12)]/(25.13 12000)  

          = 0.0900 rad = 5.15  

D C B A D C B A 
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Composite and Variable Cross-sections 

Composite Sections 

Instead of the simple sections (i.e., circular, thin-walled and rectangular), structures subjected to torsion may 

be sections of arbitrary shape or composite sections made up of two or more simple sections. While arbitrary 

shaped sections can only be dealt numerically, composites of two or more simple sections can be solved 

more conveniently. The basic assumption for solving this type of problems is that when subjected to torsion, 

the section rotates as a rigid body; i.e.,  = TL/JG is valid for each part of the section so that  = T1L/J1G1 = 

T2L/J2G2, etc. Therefore, if G is constant, T1/J1 = T2/J2 = éé..etc; i.e., the torque taken by different parts of 

the section is proportional to their J values.  

 

Example: Calculate the magnitude and location of the maximum shear stress in the compound section shown 

below when subjected to a torque of 10 k-ft.   
 

 

             

                     

                           

                         

       

     

 

      

      

 

 

 

 

 

Variable Sections 

The shape and/or size of the cross-sectional area of a structure subjected to torsional moment may vary over 

its length. The problem is easier to handle if it varies at particular locations only, although the possibility of 

stress concentration needs special attention and requires the variations in sections to be smooth or well 

rounded-off.  However, if the variation is gradual over a considerable length, torsional rotation can only be 

calculated by integration.  

 

Example: Considering the torque diagram shown below, calculate the torsional rotation at A if the cross-

section diameter varies from 4 at A to 8  at B [Given: G = 12000 ksi]. 

 
 

 

 

 

 

 

(a) Neglecting the effect of stress concentration 

   B  A = (TL/JG)AC + (TL/JG)BC = {(10 12) 90/( 4
4
/32) + (10 12) 90/( 8

4
/32)}/12000  

    A = 0.0380 rad = 2.18  

 

(b) The diameter of the circular section at a distance x from end A is d(x) = 4 + 4x/180  

Polar moment of inertia J(x) =  (4 + 4x/180)
4
/32

 

B A= (T/JG)dx = (1012)/(12000)dx/( (4+4x/180)
4
/32) = (0.01) ( 180/4) {(1/8)

3
 (1/4)

3
}/3/( /32)  

    A = 0.0209 rad = 1.20  

C 

  1        2         1  

2  

2  

2  

t = 0.10   

throughout 

The composite section consists of a thin-walled, a rectangular and a 

circular section. If the torques taken by them are T1, T2 and T3 

respectively, then T1/J1 = T2/J2 = T3/J3 = T/(J1 + J2 + J3) 

Here, area enclosed by section1,       = {(2 + 4)/2} 2 = 6.0 in
2
 

J1 = 4      
2
/ ds/t = 4 (6.0)

2
/[{(4 + 2 + 2 (2

2
 + 1

2
)}/0.10] = 1.38 in

4
  

J2 = bt
3
 = 0.141  2  (2)

3
 = 2.26 in

4
 

J3 = d
4
/32 =   2

4
/32 = 1.57 in

4
 

T1/1.38 = T2/2.26 = T3/1.57 = 10/(1.38 + 2.26 + 1.57) = 10/5.20 

 T1 = 2.64 k-ft, T2 = 4.34 k-ft, T3 = 3.02 k-ft 

max(1) = T1/(2      t) = 2.64  12/(2  6.0  0.1) = 26.43 ksi 

max(2) = T2/( bt
2
) = 4.34  12/(0.208  2  2

2
) = 31.28 ksi 

max(3) = 16 T3/( d
3
) = 16  3.02  12/(   2

3
) = 23.07 ksi 

max = 31.28 ksi, at the midpoints of rectangleôs sides
 

A 

A 

A 

4  

8  

10 Section B 

Section A 180  

B A 

10 k 10 k 

90  

B A 

10 k 10 k 

90  

T (k ) 10 

(i) (ii)  

4  
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Statically Indeterminate Problems on Torsion 

A large portion of civil engineering structures is statically indeterminate; i.e., they cannot be analyzed by 

statics alone. For purely torsional problems, since there is effectively only one equation of statics (i.e., Mx 

= 0), a statically indeterminate structure has another extra unknown. Determining such unknowns require 

knowledge of displacements; i.e., torsional rotation. 

 

Example: Considering the statically indeterminate torsional problem shown below, calculate 

(a) the maximum torsional stress and torsional rotation for a solid circular section of 4 diameter 

(b) the required diameter of a solid circular section if the maximum allowable torsional stress is 10 ksi  and 

allowable torsional rotation is 1 [Given: G = 12000 ksi]. 

 

 

 

 

 

 

 

 

 

 

 

       

 

 

 

 

(a) The polar moment of inertia of the circular section is J = (4)
4
/32 = 25.13 in

4 

The problem is statically indeterminate because the torsional moments at joints A and D are both unknown. 

This problem is divided into two statically determinate problems, namely Case 1 and 2. 

Using D = 0, the maximum torsional rotation at point A is
 

Case1: A1 = [(TL/JG)CD + (TL/JG)BC + (TL/JG)AB] 

                  = [(15  12)  (6  12) + (5  12)  (5  12) +(10  12)  (4  12)]/(25.13  12000) 

                  = 0.0740 rad 

Case2: A2 = TAL/JG = (TA  12)  (15  12)/(25.13  12000) = 0.00716 TA 

Adding Case1 and 2  A1 + A2 = A = 0.0740 0.00716 TA = 0  

        TA  = 10.33 k, from which the final torque diagram can be plotted as shown.  

Using the final torque diagram,  

   The maximum stress, max = BC = (Tc/J)BC = (5.33 12)  2/ 25.13 = 5.09 ksi, and 

   The maximum rotation, max = C = (TL/JG)CD= (4.67 12)  (6  12)/(25.13 12000) = 0.0134 rad  

         = 0.766  

 

(b) If J is the polar moment of inertia of the circular section, the final torque diagram 
 

The maximum stress, max = BC = (Tc/J)BC = (16T/ d
3
)BC = (16 5.33 12)/ d

3
 = (325.95/d

3
) ksi, and 

The maximum rotation, max = C = (TL/JG)CD= (4.67 12)  (6  12)/(J 12000) = (0.336/J) rad 

max = 10 ksi  325.95/d
3
 = 10  d = 3.19  

max = 1  = /180 rad  0.336/J = /180  J = d
4
/32 = 19.25 in

4 
 d = 3.74

 

Required diameter, d = 3.74
 

 

 

0.33 

4.67 
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TA 

5 k  
10 k 

6  5  4  
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6  5  4  
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6  5  4  
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D = + 
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15 k 

Final Torque Diagram (k) 
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Practice Problems on Torsion 

1~3.Calculate the maximum shearing stress and torsional rotation in the structures shown below (Neglect 

stress concentration) [Given: G = 12000 ksi]. 
 

                    

                         30  

 

   4  dia              2  dia     

   

       40               40           60   20   

              

 

 

                 0.5  

             

           

                                     Section between AB   

               

                         

       

                                        Section between BCD  

                  

 

                
 Fy = 10 k   y 

 

                         

                   

                                           x
 

                   
 

  
 

                      
      

10
          

      1                    
                          

 
   

 

                          1  

 

 

4. For the structure shown below, draw the torque diagram of member ACD and calculate its maximum 

torsional shear stress and torsional rotation [Given: G = 1000 ksi and the cross-section is a 12 circle]. 
 

 

 

                   

  

 

             

    

                                            

                           

 

 

 

 

5. Calculate the required depth (h) of the channel section shown below if the allowable shear stress in ABC 

is 10 ksi and the allowable angle of twist is 1 [Given: G = 12000 ksi]. 

 
 t = 10 k-in/in    T = 100 k-in 

                     

   

                          

    

                            

       

  15                            10        5   

D 

A 

1  square 
3  

1  

3 square tube (wall thickness = 0.5) 

40  30  
B C 
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6. Calculate the torsional stiffnesses (i.e., torque required to produce unit rotation per length) of the two 

thin-walled sections shown below [t b]. 
 

 

 

    

       b                          

 

 

  

  

7.  The compound section shown below is to be replaced by a circular section so that the torsional stiffness 

(torque/rotation) remains the same. Calculate the required diameter of the circular section.  
 

 

             

        t = 0.1  throughout           

  

                     

                  

       

       

8.  Calculate the magnitude and location of the maximum shear stress in the compound section shown 

below when subjected to a torque of 10 k-ft.  

Also calculate the diameter (D) of the circular section that has the same maximum shear stress when 

subjected to the same torque. 
 

 

             

                     

                           

                         

       

     

 

      

      

 

 

 

 

9. Calculate the required diameter ódô of the circular rod ABC shown in the figure below if allowable shear 

stress is 20 ksi. For the diameter ódô, calculate the maximum angle of twist in the rod [G = 12000 ksi]. 

 

         

 
 

       

                  

30                     70  

                           
10.  Calculate the torsional shear stress at A and the torsional rotation at B for the circular rod (of non-

uniform diameter) shown below (Neglect stress concentration) [Given G = 12000 ksi]. 
 

     

   

    2  dia                4  dia 

             

         

  
 

2  

2  

2  

2  

4  t = 0.10  throughout 

D 

1  1  1  

1  

0.5  

100 k  

A C B 

10  10  

d 

A B C 

Torque = 10 k-ft 

Cross-section 

b 

b 
t t 

b 
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Recent Exam Problems on Torsion 

1.   For members ab and bcd (each weighing 0.50 k) of the frame abcd loaded as shown in Fig. 1,  

(i)  draw the torque diagram, 

(ii)  calculate the maximum torsional shear stress and maximum torsional rotation 

[Given: Shear Modulus = 12000 ksi]. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 

 

2.  If the compound section shown in Fig. 2 is subjected to a 10 kN-m torque, calculate the 

(i)  magnitude of maximum shear stress in the section 

(ii)  depth and width (B) of the square section that has the same maximum shear stress when subjected to 

the same torque. 

      2m            2m                B 

 

                2m             B 

 

    

           1m      1m                 

   Compound Section            Square Section 

Fig. 2 

 
3.  For the rotating shaft ABCD shown in Fig. 3 

(i) calculate the torque T0 required to make the torsional rotation at B equal to zero, 

(ii)  draw the corresponding torque diagram and calculate the maximum shear stresses at A and D  

[Given: Shear Modulus = 12000 ksi]. 
          

   B C 

           A           D            4            2                  2   

          T0 

    

                  15          5          5  

 

Fig. 3 

 

 

c b d 
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Cross-section of 

member BCD 

1 k /  

t = 0.1m (periphery) 

0.2m 
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Stress Combination and Combined Normal Stress 

Stress in general is broadly classified as normal stress and shear stress. Normal stresses act perpendicular to 

the plane (e.g., axial stress and flexural or bending stress), while shear stresses act parallel to the plane (e.g., 

direct shear, flexural shear and torsional shear stresses). The following table shows the equations for 

different types of stresses and their validity. 

 
 Type of Stress Equation Validity  

Normal  

Stress 

Axial  = P/A All sections 

Flexural  = My/I All sections 

Shear 

Stress 

Direct Shear  = V/A All sections 

Flexural Shear  = VQ/It All sections 

Torsional Shear 

 = Tc/J Circular sections 

 = T/(2      t) Thin-walled sections 

 = T/( bt
2
) Rectangular sections 

 

Practical problems on stress analysis, including those in civil engineering, almost always consist of a variety 

of stress conditions. For example, in a typical building structure, beams and slabs are subjected to significant 

flexural and shear stresses due to vertical loads, while columns and footings have significant axial and 

flexural stresses (and possibly shear stresses mainly due to lateral loads). 

 

This discussion focuses on combination of normal stress with normal stress and shear stress with shear 

stress. The more general topic of stress combination (normal stress with shear stress) is covered in the 

transformation of stresses. 

 

Combination of Axial and Bending Stress 

Combination of normal stresses in the form of axial and bending stress is quite common in practical 

situations; e.g., in beams, columns and footings in civil engineering structures. In this case, the combined 

normal stress is simply the algebraic sum of two stresses, given by 

z (x,y) = P/A  Mz y/Iz                       ééééééé.(i) 

where P is the tensile force and Mz is the bending moment on a cross-section whose area is A, and moment 

of inertia about z-axis is Iz. A very common example of combination of axial and bending stress is the case 

of pre-stressed concrete, where a flexural member (one under bending stress) is subjected to sufficient 

compressive stress in order to reduce or avoid tension in concrete, which is relatively weak in tension.  

 

Example: Calculate the maximum stresses at the midspan section of a 20 long simply supported rectangular 

beam of (1 2 ) section under a uniformly distributed load of 1 k/ft, if it is subjected to an additional pre-

stressing compressive force of P = 100 kips. 

Also calculate the pre-stressing force P0 necessary to avoid tension in the section altogether. 

 

 

 

 

 

              

             

         

With b = 1, h = 2  

 Cross-sectional Area A = 12 = 2 ft
2
, Moment of Inertia about z-axis Iz = 1 2

3
/12 = 0.667 ft

4
 

Maximum midspan bending moment Mz = 1  20
2
/8 = 50 k-ft 

a,d =  100/2.0  50  1/(0.667) = 50 75 = 125 ksf, b/c = 50 + 75 = + 25 ksf 

If the necessary pre-stressing force to avoid tension in the section is P0, then 

t(max) = b.c = P0/2.0 + 75 = 0  P0 = 150 kips 

A 

c 

d 

b 

a 1 k/ft 

20  

z 

y 

P P 

 125 ksf 

+ 25 ksf 

 75 ksf 

+ 75 ksf 
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Combination of Bending Stresses: Biaxial Bending 

Biaxial (involving two axes) bending is the bending of a cross-section about two axes of rotation and often 

deals with bending about the centroidal axes. For an area subjected to biaxial moments Mz and My about the 

centroidal z and y axes, the compressive stress at a point with coordinates (z, y) is given by 

  x(z, y) = Mz y/Iz + My z/Iy                   éééééé.(i) 

where Iz and Iy are the moments of inertia of the cross-section.  

 

Therefore, the neutral axis is defined by the equation x(z,y) = 0  Mz y/Iz + My z/Iy = 0  

 y = (My/Mz) (Iz/Iy) z                      ...ééééé(ii) 

 

Also, max at the four corners of a rectangular section is given by  max =  6Mz/bh
2
  6My/hb

2
 é..éé....(iii) 

 

Example: Calculate the maximum bending stresses at the four corners of the midspan section of a 20 long 

simply supported rectangular beam of (12 ) section under a uniformly distributed load of 1 k/ft, inclined at 

30  with vertical. 

 

 

 

 

 

 

              

             

              
 

a = 43.3  1/(0.667) + 25  0.5/(0.167) = 64.95 + 75 = + 10.05 ksf, b = + 64.95 + 75 = + 139.95 ksf, 

   c = + 64.95 75 = 10.05 ksf, d = 64.95 75 = 139.95 ksf 

 

Equation of the neutral axis is,  

y = (25/43.3)  (0.667/0.167) z = 2.31 z 

which is a straight line through origin as indicated by the line NA.   

c 

d 

b 

a 
1 k/ft 

20  

z 

y 
With b = 1, h = 2 

Iz = 1 2
3
/12 = 0.667 ft

4 

Iy = 2 1
3
/12 = 0.167 ft

4 

Maximum midspan bending moments 

Mz = (1 cos 30 ) 20
2
/8 = 43.3 k-ft 

My = (1 sin 30) 20
2
/8 = 25 k-ft 

30  

A 

N 
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Combination of Axial and Biaxial Bending Stress 

Among civil engineering structures or structural elements, columns and footings often provide common 

examples of situations involving combination of axial stress and uniaxial or biaxial bending stresses.  

 

Combination of Axial and Bending Stresses in Footings 

A loading situation with axial and biaxial bending stress can be due to concentric axial force accompanied 

by moments about the centroidal axes [Fig. 1(a)] or a biaxially eccentric axial force [Fig. 1(b)].  

 

 

 

 

 

 

 

 
       

Fig. 1: Footing subjected to (a) Concentric axial load and biaxial bending, (b) Biaxially eccentric axial load 
 

For a cross-sectional area subjected to a concentric compressive force P and biaxial moments Mx and My 

about the centroidal x and y axes [Fig. 1(a)], the compressive stress at a point with coordinates (x, y) is  

  z (x,y) =  P/A  Mx y/Ix  My x/Iy            ééééééé.(i) 

where A, Ix and Iy are the area and moments of inertia of the cross-section. For a biaxially eccentric 

compressive load P located at a point (ex, ey) in the coordinate axes; i.e., with eccentricities ey and ex about 

the x and y axes respectively as shown in Fig. 1(b), the biaxial bending moments are Mx = Pey and My = Pex 

and the compressive stress at (x, y) is given by 

  z (x,y) =  P/A  Pey y/Ix  Pex x/Iy           ééééééé.(ii) 

 

Kern of a Footing Area 

Since the soil below foundation can hardly take any tension, it is important that the force P be applied on the 

footing in a manner to ensure the stresses below the entire area under the footing remain compressive. The 

zone within which the load is to be applied is called the kern of the area. A line of action of the applied load 

that ensures compression is given by  (x,y)  0 

   P/A  Pey y/Ix  Pex x/Iy  0   1/A + ex x/Iy + ey y/Ix  0      ééééééé(iii) 

For a rectangular area (bh), A = bh, Ix = bh
3
/12, Iy = hb

3
/12, Eq. (iii)   

1 + 12 ex x/b
2
 + 12 ey y/h

2
  0                 ééééééé(iv) 

To ensure compressive stress at the corner point where (x, y) = (b/2, h/2),  

1 + 6 ex/b + 6 ey/h  0  ex/(b/6) + ey/(h/6)  1            éééééé.é(v) 

Similarly, to ensure compressive stress at corner points (b/2,h/2), ( b/2, h/2) ( b/2, h/2)   

1  ex/(b/6) + ey/( h/6)  1; ex/(b/6) + ey/(h/6)  1        éé..éé(vi)~(viii) 

 

Plotting the lines defined by Eqs. (v)~(viii) defines a zone (called kern, Fig. 2), a parallelogram with 

diagonals b/3 and h/3, within which the load must act in order to ensure compressive stresses at the four 

corners of the footing, thereby ensuring an entire area under the footing free of tensile stresses.  

x 

y 

x 

y P 

ey 

ex Mx 

My 

(x, y) (x, y) 

(a) (b) 

x 

y 

h/3 

b/2 

h/2 

h/2 

b/2 Fig. 2: Kern of a rectangular area  

b/3 

P 
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Combination of Shear Stresses for Helical Spring 

Helical springs provide an important example of combining shear stresses. These springs are used in several 

engineering structures and equipment as load transferring elements or shock absorbers.    

 

Combined Shear Stresses in Helical Springs 

Helical springs made of rods or wires of circular cross-section (as shown in Fig. 1) may be analyzed in the 

elastic range by the superposition of shearing stresses. One important assumption needed here is that any one 

coil of such a spring will be assumed to be in a plane, which is nearly perpendicular to the axis of the spring. 

This assumption can be made if the adjoining coils are close enough. 

   

 

 

 

 

 

 

 

 

 

 

 

 

Therefore the forces acting on any section of the spring are (i) Shearing force V = P, (ii) Torque T = PR; 

where P = force applied along the axis of the spring, R = distance of the spring axis to the centroid of the 

coilôs cross-section. The maximum shearing stress at an arbitrary section of the spring is found by 

superposing the direct and torsional shear stresses, using J = Polar moment of inertia of coil section = d
4
/32 

= r
4
/2.  

By superposing, one obtains max = direct + torsion = P/A + Tr/J = P/A (1 + 2R/r)                 éé...é....(i) 

 

Deflection and Stiffness of Helical Springs 

In Fig. 1 (c), sin  = BC/BD = EG/DG                  éééé(ii) 

If EG = d  is the differential deflection of the small section AB (of length dx), and using DG = BD (d), Eq. 

(ii)  R/BD = (d )/BD (d )  d  = R (d )            éé...é(iii) 

Also, d  = T(dx)/JG = PR (dx)/JG; The deflection of a helical spring can be obtained (neglecting the 

deflection due to direct shear stress, which is normally small) by using the following relationship 

  d  = PR
2 
dx/JG   = PR

2
L/JG                  éé.é(iv)     

where L = length of the springôs rod and G = shearing modulus of elasticity (also called the modulus of 

rigidity). For a closely coiled spring the length L of the wire may be obtained with sufficient accuracy as 

2 RN, where N is the number of live or active coils of the spring. 

 = 64 PR
3
N/Gd

4
           ééé.é(v) 

This equation can be used to obtain the deflection of a closely coiled helical spring along its axis when 

subjected to either tensile or compressive force P. The stiffness of a spring, often referred to as spring 

constant (commonly denoted by k), is defined as the force required to produce unit deflection.  

k = P/  = Gd
4
/(64R

3
N)             éééé(vi) 

 

 

 

E 
D 

C 

A 
B 

P 

P P 

V = P 

T = PR 

d = 2r 

R 

Fig. 1: Forces acting on a closely coiled Helical Spring 

G 

d  

(a) (b) (c) 
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Practice Problems on Combination of Stress 

1.  Calculate the maximum normal stress in the beam shown below and show the point/points where it 

occurs [The beam area is rectangular and 1 wide]. 
 

        

   

 

1.5 

 

        10            10   

      

2. In the beam shown below, draw the normal stress-diagram over the sections A-A  and B-B  if  = 60 . 
           

                    

                                   
 

                      
A                                    B                                    

         

              A                                     B                    

              24   24  cross-section   

 

3. In the beam shown below, calculate the maximum allowable value of  in order to avoid tension in (i) 

Section A-A , (ii) Section B-B .  

           
                      P 

                                   
 

                     
A                B                                    

         

             A                   B     

Diameter = 6    
 

4.  Calculate the maximum normal stress in the structure shown below (Neglect stress concentration). 
 

 

                    

                         30  

 

   4  dia              2  dia     

   

       40               40           60   20   

              

5. Calculate the maximum compound normal stress in the beam shown in the figures below and show the 

point(s) where it occurs [The beam area is a 1 1.5 rectangle]. 

 
        

                         
               

  

                                 a    d          

           1.5   

                 20 k                 b    c    

5                   7               1             

                       

 

         Side Elevation         Cross-section 

45  

10
k 

10
 k 

  b, c 

 a,  d 

9  1  
100 k 

 

6  4  

10
k 10

k 
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6. Calculate the maximum compound normal stress in the beam shown below (subjected to inclined 

loading) and show the point/points where it occurs [The beam area is a 0.5 1  rectangle]. 

 
                  

         
      

 

        a,  d                                

       1  deep                   

                                        b, c                                          

           0.5  wide   

         

 

                   Side Elevation              Cross-section 

 

7. For the structure shown below, draw the axial force and bending moment diagram of member ACD and 

calculate the maximum normal stress in the member. 
 

 

 

                   

  

 

             

    

                                            

                           

 

 

 

 

8.  Determine the kern of a solid circular cross section of radius R and show the kern on the section. 

 

9.  The shaded area shown below represents the kern of the rectangular footing ABCD. For the given loads 

calculate the normal stresses at A, B, C, D and locate the neutral axis. 

  

  

 

 

 

 

 

 

 

 
 

10. Calculate the maximum compound shear stress in the beam described in Problem 5 and show the 

point(s) where it occurs. 

 

11. In the structure described in Problem 7, calculate the maximum compound shear stress at A. 
 

12
 k 

45  

5 k 

20 k 

E 

C 

F 

A 

5  

10  

5  
1 k/ft 

10  

10  

B 

D 

x 

y 

z 

x 

y 

A B 

C D 

10 k 

10 k 

2  2  

1  

1  10 k 

d a 

b c 

5  7  

12
 k 
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12.  Design the connection bolts for shear, under the loading condition shown in the figure below, if the 

allowable shear stress is 12 ksi. 

 
                   

            

 

   

   

 

 

   

 

 

        

 

13. Calculate the deflection at point C for the timber beam ABCDE loaded as shown below, if the spring at 

E has shear modulus = 12000 ksi, coil diameter = 2, inside diameter of spring = 8, number of coils = 8 

[Modulus of elasticity of timber = 1500 ksi].  

 

 

 

 

 

 

 

 

 

 

14. In the figure shown below, both B1C1D1 and ABCDE are rigid beams. The helical springs at A, B1 and 

D1 have coil diameter = 1 in, average spring radius = 3 in, number of coils = 5 and shear modulus = 

12000 ksi. Calculate the deflections at B, D, B1, D1 and the combined shear stress for the spring at A. 

 

 

 

 

 

 

 
 

 

     2         6      4  

15
k 

6  

2  

2  

1  0.5 1  0.5 

1 k 

A 
B D 

E 
C 

B1 

 C1 

 

D1 

 

             6         3         3                 6  

2 k 2 k 

A B C D 

12  

9  

X-Section 

E 
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Transformation of Stresses 

The earlier discussions on stress combination dealt only with the superposition of normal stress with normal 

stress (e.g., axial stress with flexural stress) and shear stress with shear stress (e.g., direct shear stress with 

torsional shear stress). However, many practical situations require the combination of normal stress with 

shear stress (e.g., axial and flexural stress with flexural and torsional shear stress).  

 

Besides, the failure of several structural materials (e.g., concrete, steel, timber) due to various types of 

loading (e.g., tension, compression, shear, bending, torsion) occurs along different surfaces based on 

material properties and orientation of maximum stress. The choice of these surfaces requires the knowledge 

about stress transformation, to know the normal and shear stresses along any surface under any particular 

stress condition.  

 

Equations of Transformation of Stresses 

 

 

 

 

 

 

 

 

 

 

 

 

 

Considering the equilibrium of the element shown in the free-body diagram of Fig. 1(b), 

Fx = 0  xx dA cos  + xy dA sin   ( xx  dA) cos  + ( xy  dA) sin  = 0 

 xx  cos   xy  sin  = xx cos  + xy sin     éééééééééééé.éé..(i) 

Fy = 0  xy dA cos  + yy dA sin   ( xx  dA) sin   ( xy  dA) cos  = 0 

 xx  sin  + xy  cos  = xy cos  + yy sin       éééééééééééé.éé.(ii) 

[(i)  cos   + (ii)  sin ]  xx  (cos
2
  + sin

2
 ) = xx cos

2
  + yy sin

2
  + 2 xy cos  sin  

    xx  = xx (1 + cos 2)/2 + yy (1  cos 2 )/2 + xy sin 2  

   xx  = ( xx + yy)/2 + {( xx  yy)/2} cos 2  + ( xy) sin 2  ééééé.é(iii) 

[(i)  sin    (ii)  cos ]  xy  (sin
2
  + cos

2
 ) = xx cos  sin   yy cos  sin  + xy (sin

2
 cos

2
 ) 

    xy  = xx (sin 2 )/2  yy (sin 2 )/2  xy cos 2  

   xy  = {( xx yy)/2} sin 2  + ( xy) cos 2           é.éééé.é(iv) 

 

Example: If the normal and shear stresses on the element shown in Fig. 1(a) are xx = 20 ksi, yy = 10 ksi 

and  xy = 15 ksi,  calculate the normal stress xx  and shear stress xy  on a plane defined by  = 30 .  

 

Eq. (iii)  xx  = ( xx + yy)/2 + {( xx  yy)/2} cos 2  + ( xy) sin 2   

            = (20  10)/2 + {(20 + 10)/2} cos (60 ) + (15) sin ( 60 )  

                         = 5 + 15 cos (60 ) + 15 sin ( 60 ) = 0.49 ksi   

Eq. (iv)  xy  = {( xx yy)/2} sin 2  + ( xy) cos 2   

           = {(20 + 10)/2} sin ( 60 ) + (15) cos (60 ) = 20.49 ksi 

 

yy 

yy 

xx xx 

xy 

xy 

Equations for the transformation of normal and 

shear stresses on a differential element over any 

surface to a plane in another orientation is 

derived here. Fig. 1(a) shows the normal stresses 

xx, yy along the x- and y-directions on the 

vertical and horizontal surfaces respectively and 

the shear stress xy parallel to both the surfaces.  

 

Fig. 1(b) shows the free-body of a small element 

demonstrating stresses xx , xy  over a plane of 

area dA oriented at an angle  to the original 

surface (acted upon by stresses xx and xy). 

 

Fig. 1: Transformation of Normal and Shear Stresses 

yy 

xx 

xy 

xx  

xy  

 

(a) (b) 

dA 
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Principal Stresses and Principal Planes 

The normal and shear stresses on a plane at an angle  with a reference plane acted on by normal stresses 

( xx, yy) and shear stress xy are given by the following expressions  

xx  = ( xx + yy)/2 + {( xx  yy)/2} cos 2  + ( xy) sin 2           .ééééé.é(iii) 

xy  = {( xx  yy)/2} sin 2  + ( xy) cos 2              é.éééé.é(iv) 

These equations can also be written as 

xx  = ( xx + yy)/2 + [{( xx  yy)/2}
2
 + ( xy)

2
] cos (2 )          é.éééé..é(v) 

xy  = [{( xx  yy)/2}
2
 + ( xy)

2
] sin (2 )            é.éééé.é(vi) 

 where tan  = 2 xy/( xx  yy)  

The maximum and minimum values of normal stress are 

xx(max) = ( xx + yy)/2 + [{( xx  yy)/2}
2
 + ( xy)

2
]; when  = /2, /2 + 180         

xx(min) = ( xx + yy)/2 [{( xx  yy)/2}
2
 + ( xy)

2
]; when  = /2  90          

 

The stresses xx(max) and xx(min), also denoted by 1 and 2, are called the principal stresses, while the 

mutually perpendicular planes they act on, represented by  = /2, /2 + 180 and  = /2  90 , are called 

the principal planes. They represent the maximum tensile and compressive stresses at the corresponding 

point. These stresses and planes are extremely important in analyzing the failure criteria of structural 

materials, particularly for brittle materials. An important aspect of the principal planes is that the shear 

forces on them are zero.  

 

However, for óyieldingô materials or the ones that fail in shear, the maximum values of shear stress and the 

corresponding planes are also very important 

xy(max) = [{( xx yy)/2}
2
 + ( xy)

2
]; when  = /2  45 , /2 + 135            

xy(min) = [{( xx yy)/2}
2
 + ( xy)

2
]; when  = /2 + 45 , /2 135             

 

Typical Example Problems  

The equations (vii) and (viii) can be used to predict the maximum stress and failure surface in several typical 

stress conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

ééé...é(vii) 

é.éé.ééé(viii) 

Uniaxial Tension 

xx = 0, yy = 0, xy = 0  tan  = 2  0/(0  0)   = 180  

1 = (0 + 0)/2 + [{(0  0)/2}
2
 +(0)

2
] = 0/2 + 0/2 = 0, when  = 90 , 270    

and 2 = 0/2  0/2 = 0, when  = 0 , 180   

xy(max) = 0/2, when  = 45 , 225 ; xy(min) = 0/2, when  = +135 ,  45   

 

 
Hydrostatic Compression 

xx = 0, yy = 0, xy = 0  tan  = 2  0/( 0 + 0)   is indeterminate 

1 = ( 0 0)/2 + [{( 0 + 0)/2}
2
 +(0)

2
] = 0 + 0 = 0 

and 2 = 0  0 = 0  

xy(max) = 0; xy(min) = 0 

Therefore, the normal stress is 0 and shear stress is zero on all surfaces 

 

Pure Shear 

xx = 0, yy = 0, xy = 0  tan  = 2 0/(0  0)   = 90  

1 = (0 + 0)/2 + [{(0 0)/2}
2
 + ( 0)

2
] = 0 + 0 = 0, when  = 45 , 225    

and 2 = 0  0 = 0, when  =  45 , 135   

xy(max) = 0, when  = 0 , 180 ; xy(min) = 0, when  =  90  

 

0 

0 

0 0 

0 

0 

0 

0 
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Mohrôs Circle 

The equations for the normal and shear stresses on a plane at angle  with a reference plane acted on by 

normal stresses (xx, yy) and shear stress xy have been derived to be  

xx  = ( xx + yy)/2 + [{( xx  yy)/2}
2
 + ( xy)

2
] cos (2 )          é.éééé..é(v) 

xy  = [{( xx  yy)/2}
2
 + ( xy)

2
] sin (2 )            é.éééé.é(vi) 

 where tan  = 2 xy/( xx  yy)  

These equations can be re-adjusted to the following form 

{ xx   ( xx + yy)/2}
2
 + ( xy 0)

2
 = {( xx  yy)/2}

2
 + ( xy)

2
          é.éééé.é(ix) 

 

Eq. (ix), when plotted with xx  in x-axis and xy  in y-axis, takes the form (Xa)
2
 + (Y 0)

2
 = R

2
, which is the 

equation of a circle with center(a, 0) = [(xx + yy)/2, 0] and radius R = [{( xx yy)/2}
2 
+ ( xy)

2
]. This circle 

is called Mohrôs Circle, after Otto Mohr of Germany, who first suggested it in 1895. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example: For an infinitesimal element, xx = 30 ksi, yy = 10 ksi, and  xy = 15 ksi. In Mohrôs circle of 

stress, show the normal and shear stresses acting on a plane defined by  = 15 . 

 

The coordinates of the center of the circle = [(xx + yy)/2, 0] = [( 30 + 10)/2, 0] = (10, 0) and  

radius R = [{( xx yy)/2}
2 
+ ( xy)

2
] =  [{( 30 10)/2}

2 
+ ( 15)

2
] = 25 

( 10, 25) 

( 19.8, 23.0) 

(0, 0) 

( 10, 0) 

( xx , xy ) 

Fig. 1 shows a Mohrôs Circle with some of its more 

important features. Among them, the coordinates of 

the center of the circle = (a, 0) = [(xx + yy)/2, 0] and 

radius R = [{( xx  yy)/2}
2 

+ ( xy)
2
] have already 

been mentioned before. 

 

However, the figure also shows that the principal 

stresses are 1 = a + R, 2 = a  R,  

while the maximum and minimum shear stresses are 

max = R and min = R. 

Since the center of the circle is at the midpoint of all 

radial lines, ( 1 + 2)/2 = ( xx + yy)/2 = a 

Also from figure, tan  = ( xy 0)/( xx ( xx + yy)/2) = 

2 xy /( xx yy) = tan ;  = . 

 

It can also be proved that if the slope of AB with 

vertical is , the coordinates of B = (xx , xy ). 

 

Fig. 1: Mohrôs Circle 

xx  

xy  

( 1, 0) ( 2, 0) 

R 

R 

R 
(a, 0) 

(a, min) 

( xx, xy) 

( xx , xy ) 

 

 =  

2  

O 

A 

B 

The principal stresses are  

1 = a + R = 10 + 25 = 15 ksi,  

and 2 = 10 25 = 35 ksi.  

max = R = 25 ksi, and min = 25 ksi. 

 

tan  = 2 xy/( xx yy) = ( 30)/( 40)   =  = 216.9 

 

The coordinates of B = (19.8, 23.0) = (xx , xy ) 

xx  = 19.8 ksi, xy  = 23.0 ksi 

 

( 10, 25) 

( 30, 15) 

( 35, 0) (15, 0) 

A 

B 

216.9  

19.8 

23.0 

(a, max) 

15  
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Yield and Fracture Criteria  

The studies on transformation of stress are aimed at developing the state of critical normal and shear stresses 

and the corresponding surfaces. But no comprehensive theory is available to predict the precise response of 

all types of real materials to such stresses, incorporating the multitude effects of static, dynamic, impact and 

cyclic loading, as well as temperature. Only the classical idealizations of yielding criteria for ductile 

materials and fracture criteria for brittle materials are discussed here, both of which are greatly affected by 

the temperature as well as the state of stress itself. All the criteria discussed here are formulated with respect 

to the principal stresses 1 and 2 and based on comparison with the yield criteria for materials under 

uniaxial tension, assuming identical material properties in tension and compression. 

 

1. Maximum Normal Stress Theory (Rankine): 

According to this theory, yielding occurs when the maximum normal stress (1 or 2) at a point equals the 

maximum normal stress at yield in the uniaxial tension test.  

Since the maximum normal stress at yield in the uniaxial tension test = Y (the yield strength of the 

material), the yield criterion becomes 1  Y, or 2  Y. 

This can be plotted with 1 in the x-axis and 2 in the y-axis as shown in Fig. 1.  

2. Maximum Normal Strain Theory (St. Venant): 

According to this theory, yielding occurs when the maximum normal strain (1 or 2) at a point equals the 

maximum normal strain at yield in the uniaxial tension test.  

Since 1 = ( 1  2)/E, 2 = ( 2  1)/E [where E = Youngôs modulus,  = Possonôs ratio], and the 

maximum normal strain at yield in the uniaxial tension test = Y/E,  

the yield criterion becomes 1  2  Y, or 2  1  Y. 

This is plotted with 1 in the x-axis and 2 in the y-axis as shown in Fig. 2.  

3. Maximum Shear Stress Theory (Tresca): 

According to this theory, yielding occurs when the maximum shear stress (max) at a point equals the 

maximum shear stress at yield in the uniaxial tension test.  

Since max = 1  2 /2 and the maximum shear stress at yield in the uniaxial tension test = Y/2 (the 

yield strength of the material), the yield criterion becomes1  2  Y, and adding the normal stress 

criterion 1  Y, or 2  Y, is plotted with 1 in the x-axis and 2 in the y-axis as shown in Fig. 3.  

4. Maximum Distortion-Energy Theory (Von Mises): 

According to this theory, yielding occurs when the maximum distortion strain energy (Udist) at a point 

equals the maximum distortion strain energy at yield in the uniaxial tension test.  

Since Udist for 3-dimensional stress is = {(1 2)
2
 + ( 2 3)

2 
+ ( 3 1)

2
}/12G, i.e., for 2-dimensional 

stress is = {( 1 2)
2
 + ( 2 0)

2 
+ (0 1)

2
}/12G = {( 1 2)

2
 + 2

2 
+ 1

2
}/12G, and Udist at yield in the 

uniaxial tension test = 2Y
2
/12G, the yield criterion becomes {(1 2)

2
 + 2

2 
+ 1

2
} = 2Y

2
; i.e.,  

1
2
 + 2

2 
 1 2 = Y

2
, which is plotted with 1 in the x-axis and 2 in the y-axis in Fig. 4. 

 

  
 

 

 

 

 

 

 

 

(Y, Y) (Y, Y) (Y , Y ) (Y, Y) 

1 1 1 1 

2 2 2 2 

Fig. 1 Fig. 2 Fig. 3 Fig. 4 

No Yield 

Zone 
No Yield 

Zone 

No Yield 

Zone 

No Yield 

Zone 

Y  = Y/(1 ) 
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Practice Problems on Transformation of Stress 

1.  In the beam shown below, calculate the principal stresses and show the principal planes at A and B.  
           

                 10 k             10 k             

          

            0.5    

                                                       1  

     A         1  

                   Cross-section 

     5       2.5     2.5              5  

 

                Side Elevation          

 

2. For the structure shown below, calculate the stresses (x, y, xy) and the principal stresses (1, 2) at 

points a and b of section A-A.  

 
 

             4    

A      15                        y  

             Fx = 100
k
  

A                       
 

                                      
y  

                     
x  

             a 
               

                1     z               b
                      

z 
                          

 

       1
       

        

           

Section A-A 

 

3.  For the structure shown below, calculate the principal stresses (and corresponding angles) at point óaô of 

the section D. 
 

 

 

                   

  

 

             

    

                                            

                           

 

 

 

 
       

 

 

 

 

 

 

 

4. In the beam shown below, calculate the principal stress and show the principal planes for the point A. 

           
                    

                                   
 

                      
                                                                       

       

                                                                        

                    

Cross Section of D 

6  

12  

6  

a 

5 k 

20 k 

E 

C 

F 

A 

5  

10  

5  
1 k/ft 

10  

10  

B 

D 

x 

y 

z 

10  100 k 
60  

A 

Fy = 15
k 

3  

50 k 50 k B 

24   24  cross-section 
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5.  In the column shown below, use transformation of stress to calculate the maximum shear stress at 

Section A-A . Also indicate the point and surface where it occurs in the section. 
 

       P = 100 kips       

  

          60  

 

 

 

           

             5  

            Area (1 1 ) 

       

                      

                            

6. The shear stress at an element on the neutral axis of section D of beam ABCD shown below is 50 psi. 

For this element 

(i)  calculate normal stresses ( xx, yy), principal stresses (1, 2) and maximum shear stress ( max), 

(ii)  draw the Mohrôs circle of stresses. 

w k/ft         

45                                 12  

 A     B    C        D     

          8  

               10   10    10       

Beam Section 

 

7.  For an infinitesimal element, x = 30 ksi, y = 10 ksi, and  xy = 15 ksi. In Mohrôs circle of stress, 

show the normal and shear stresses acting on a plane defined by  = 45 . 

 

8.  The coordinate of the center of a Mohrôs circle is (30, 0) and its radius is 12. If the principal plane is 

located at an angle  = 30  from plane X-X, calculate the normal stresses (x, y) and shear stress (xy) 

on that plane [all stresses are in ksi]. Also show these stresses graphically on the Mohrôs circle.  

 

9. For the stress condition in the element shown below, find the maximum allowable value of p using the 

Von Mises yielding criterion, if the yield strength of the material is 40 ksi. 
 

        3p 

  p 

                          

       

                           p             p   

 

 

p   

  3p 

 

10. Calculate the shear stress necessary to cause yielding of a material in a pure shear condition. Use the 

Von Mises yielding criterion, if the yield strength of the material is 36 ksi.  

 

11. The coordinates of the center of a Mohrôs circle is (p0/2, 0) and its radius is p0.  

Calculate the maximum allowable value of p0 if the material is to avoid yielding using all the criteria 

suggested below, by (i) Rankine, (ii) St. Venant, (iii) Tresca, (iv) Von Mises  

[Given: Yield Strength of the material = 400 MPa, Poissonôs ratio = 0.25]. 

 

12.  For the stress condition described in Problem 7, calculate the required yield strength Y to avoid yielding 

of the material using the yield criteria suggested by  

(i) Rankine, (ii) St. Venant, (iii) Tresca, (iv) Von Mises [Given: Poissonôs ratio = 0.25]. 

 

A A  
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Bending Moment Diagram (BMD) 

1.  BM = 0 at points A 

(i) Free End   (ii) Hinge/Roller Supported End  (iii) Internal Hinge 

 

A                    A                             A 

  

 

2.  BM  0 at points B (in general, but can be = 0 only for special loading cases)  

(i) Fixed End      (ii) Internal Roller/Hinge support  

    B           B 

                                                                                

  

3.  Verify and memorize the following BMDs 

(i) Cantilever Beams               P 

 M0                                    w/  

         

                                                  

   

  

     

     M0    Pd              wL
2
/2 

(ii) Simply Supported Beams 

      M0                  P        w/      

        

                                                    

                               

   

 M0               Pab/(a+b)              wL
2
/8  

                         

      (= PL/4, if a = b = L/2) 

(iii) Beams with Overhang  

                             P           w/  

               M0 

                                        

                                  

   

                     

          M0             Pa                  wa
2
/2            

           

(iv) Beams with Internal Hinge 

     P        P 

                           w/             

      

                                         

                                               

                     

          Pab/(a+b)     Pab/(a+b)               wL
2
/8  

                                             

     Pac/(a+b)                   waL/2 

L d L 

L a b L 

a L a L a L 

   c  d        a     b   a      b        c        d          L             a 
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4. Qualitative BMDs 

  

                              

      

                                         

                                  
                     

                                

           

[  implies that the ordinate can be positive or negative depending on the loads and spans]  
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Qualitative Deflected Shapes 

 

1. The following figures show qualitative deflected shapes for the beams due to the applied loads. 

 

      (i)              (ii)   

   

 

 

 

 

 

(iii)             (iv) 

             

  

 

 

 

 

(v)              (vi)  

   

 

 

 

 

(vii)           (viii)  

              

 

   

 

 

(ix)            (x)  

   

           

 

 

 

 

      (xi)                        (xii)  
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Moment-Curvature Relationship 
 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

If NN  = s and PP = s + u 

If s  0, Axial Strain x = u/ s  du/ds .éé.(i) 

Also, u = y   u/ s = y / s       ééé(ii) 

If s  0, du/ds = y d /ds         ééé(iii) 

 

Also, Curvature  = 1/R = d /ds  

Eq. (i)  x = y           ééé(iv) 

 

Using stress-strain relationship, x = x/E and also x = My/I  My/EI = y  

Curvature,  = M/EI           ééé(v), the moment-curvature relationship 

and Radius of Curvature, R = 1/ = EI/M       ééé(vi) 

 

From analytic geometry,  = (d
2
v/dx

2
)/{1+(dv/dx)

2
}

3/2 
 d

2
v/dx

2
, if dv/dx  0 

(v)  d
2
v/dx

2
  M/EI; i.e.,  Bending Moment, M  EI d

2
v/dx

2
      é.éé(vii) 

 

Also, Shear Force V = dM/dx  EI d
3
v/dx

3 
and Load w = dV/dx  EI d

4
v/dx

4
ééé(viii)  

 

Example: Calculate the tip deflection of the cantilever beam shown below [Given: EI = const]. 

 

EI d
4
v/dx

4 
 w0           

 V(x) = w0 x + C1   éééé..(1)       

 M(x)
 
= w0 x

2
/2 + C1 x + C2  éééé..(2) 

V(0) = 0  C1 = 0 [from (1)], M(0) = 0  C2 = 0 [from (2)] 

 EIv (x) 
 

 w0 x
3
/6 + C3  éééé..(3) 

and EIv(x) 
 

 w0 x
4
/24 + C3 x + C4 éééé..(4) 

v (L) = 0  C3 = w0 L
3
/6 [from (3)] 

v(L) = 0  C4 = w0 L
4
/8 [from (4)] 

Eq. (4)  v(0) = C4/EI = w0 L
4
/8EI 

O 

D 
C 

A 
B 

R 

 

N 

N  

D 

C 

A 

B 

P 

P  

y 

w0 per unit length 

L 

wL
2
/2 

M M 

Assumptions: 

1. Plane sections remain plane 

and perpendicular to NA 

2. Deformations are small 

3. Hookeôs law is valid 

P 
N 

N  
P  
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Calculation of Deflection using Singularity Functions 

Singularity Functions: 

f(x) = x a
n
  f(x) = 0, when x  a; and f(x) = x a

n
, when x  a [where n  0] 

         f(x) = x a
0
  f(x) = 0, when x  a; and f(x) = 1, when x  a 

However x a
n
 has no physical significance if n  0, and is written only as a notation with an asterisk 

(*) as subscript; e.g., f(x) = x a
1
* 

The integration and differentiation of singularity functions follow the rules for ordinary polynomial 

functions; i.e., x a
n
 dx = x a

 n+1
/(n+1)

 
+ C1 and d( x a

n
)/dx = n x a

n 1 

e.g., x a
2 
dx = x a

3
/3 + C1 and d( x a

2
)/dx = 2 x a

1 
 

By definition, x a
n
* dx = x a

 n+1
*
 
+ C1 if n  0;  

e.g., x a
2
* dx = x a

1
*
 
+ C1 and x a

1
* dx = x a

0 
+ C1 

 

Singularity Functions for Common Loadings: 

Common loadings are expressed in terms of the following singularity functions 

 

 

  

 

 

    w(x) = 10 x 0
1
* 20 x 5

1
*       w(x) = 2 x 5

0
      w(x) = 100 x 5

2
* 

 

Example 1: Calculate the tip deflection of the cantilever beam shown below [Given: EI = const]. 

EI d
4
v/dx

4 
  w(x) =  P0 x 0

1
*          

 V(x)
 
=  P0 x 0

0
+ C1  éééé..(1)       

 M(x)
 
= P0 x 0

1
 + C1 x + C2 éééé..(2) 

V(0) = 0  C1 = 0 [from (1)], M(0) = 0  C2 = 0 [from (2)] 

 EIv (x) 
 

 P0 x 0
2
/2 + C3  éééé..(3) 

and EIv(x) 
 

 P0 x 0
3
/6 + C3 x + C4 éééé..(4) 

v (L) = 0  C3 = P0 L
2
/2 [from (3)] 

v(L) = 0  C4 = P0 L
3
/3 [from (4)] 

Eq. (4)  v(0) = C4/EI = P0 L
3
/3EI 

 

Example 2: Calculate the midspan deflection of the simply supported beam shown below. 

EI d
4
v/dx

4 
 w(x) =  P0 x L/2

1
*         

 V(x) 
 

  P0 x L/2
0 
+ C1  éééé..(1)       

 M(x)
 

 P0 x L/2
1
 + C1 x + C2 éééé..(2) 

 M(0) = 0  C2 = 0 [from (2)], M(L) = 0  C1 = P0 /2 [from (2)] 

 EIv (x)  P0 x L/2
2
/2 + (P/2) x

2
/2 + C3   éééé..(3) 

and EIv(x)  P0 x L/2
3
/6 + (P/2) x

3
/6 + C3 x + C4 éééé..(4) 

v(0) = 0  C4 = 0 [from (4)] 

v(L) = 0  C3 = P0 L
2
/16 [from (4)] 

Eq. (4)  EI v(L/2) = (P/2) (L/2)
3
/6 + ( P0 L

2
/16) L/2  v(L/2) = P0 L

3
/48EI 

 

Example 3: Derive equation of the deflected shape of the beam shown below. 

w(x) = 10 x 0
1
*+ R1 x 5

1
* 1 x 5

0
 +1 x 15

0
 + 0.15 x 30

1
 

 

BCs: V(0) = 0, M(0) = 0, M(40) = 0, 

         v(5) = 0, v(40) = 0 

             

            

10 k 20 k 

5  10  5  10  

2 k/  

5  10  

100 k 

P0  

L 

L/2 L/2 

5  10  10  15  

10k   1 k/    
1.5 k/   

P0  
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1. Statically Determinate Beam with Overhang 

EIv
iv
(x)  w(x) = RB xï15

ï1
* ï10 xï20

ï1
*      

EIv (x)  V(x) = RB xï15
0
 ï10 xï20

0 
+ C1     (1) 

     EIv (x)  M(x) = RB xï15
1
 ï10 xï20

1 
+ C1 x + C2    (2)

 

     EIv (x) = S(x)  RB/2 xï15
2
 ï5 xï20

2 
+ C1x

2
/2 + C2 x + C3   (3) 

     EIv(x) = D(x)  RB/6 xï15
3
 ï5/3 xï20

3 
+ C1x

3
/6 + C2x

2
/2 + C3 x + C4  (4) 

 M(0) = 0  C2 = 0         (5) 

D(0) = 0  C4 = 0          (6) 

V(20) = 0  RB ï10 + C1 = 0       (7) 

M(20) = 0  5RB + 20 C1 = 0       (8) 

D(15) = 0  562.5 C1 + 15 C3 = 0       (9) 

Solving (7), (8), (9)  C1= ï3.33, C3 = 125, RB = 13.33    (10) 

     EIv(x) = D(x)  2.222 xï15
3
 ï1.667 xï20

3 
ï 0.555 x

3
 + 125 x   (11) 

 

2.  Statically Indeterminate Beam with Overhang 

EIv
iv
(x)  w(x) = RB xï15

ï1
* ï10 xï20

ï1
*      

EIv (x)  V(x) = RB xï15
0
 ï10 xï20

0 
+ C1     (1) 

     EIv (x)  M(x) = RB xï15
1
 ï10 xï20

1 
+ C1 x + C2    (2)

 

     EIv (x) = S(x)  RB/2 xï15
2
 ï5 xï20

2 
+ C1x

2
/2 + C2 x + C3   (3) 

     EIv(x) = D(x)  RB/6 xï15
3
 ï5/3 xï20

3 
+ C1x

3
/6 + C2x

2
/2 + C3 x + C4  (4) 

 S(0) = 0  C3 = 0         (5) 

D(0) = 0  C4 = 0          (6) 

V(20) = 0  RB ï10 + C1= 0       (7) 

M(20) = 0  5RB + 20 C1 + C2 = 0       (8) 

D(15) = 0  562.5 C1 + 112.5 C2 = 0      (9) 

Solving (7), (8), (9)  C1= ï5, C2 = 25, RB = 15     (10) 

     EIv(x)  D(x) = 2.5 xï15
3
 ï1.667 xï20

3 
ï 0.833 x

3
 + 12.5 x

2
   (11) 

 

3.  Statically Determinate Beam with Overhang & Internal Hinge 

EIv
iv
(x)  w(x) = C xï10

ï3
*
 
+RB xï15

ï1
* ï10 xï20

ï1
*     

EIv (x)  V(x) = C xï10
ï2

*
 
+RB xï15

0
 ï10 xï20

0 
+ C1   (1) 

     EIv (x)  M(x) = C xï10
ï1

*
 
+RB xï15

1
 ï10 xï20

1 
+ C1 x + C2   (2)

 

     EIv (x) = S(x)  C xï10
0 
+RB/2 xï15

2
 ï5 xï20

2 
+ C1x

2
/2 + C2 x + C3  (3) 

     EIv(x) = D(x)  C xï10
1
+RB/6 xï15

3
ï5/3 xï20

3 
+C1x

3
/6 +C2x

2
/2 +C3 x +C4 (4) 

 S(0) = 0  C3 = 0         (5) 

D(0) = 0  C4 = 0          (6) 

V(20) = 0  RB ï10 + C1 = 0       (7) 

M(10) = 0  10 C1 + C2 = 0        (8) 

M(20) = 0  5RB + 20 C1 + C2 = 0       (9) 

D(15) = 0  562.5 C1 + 112.5 C2 + 5 C  = 0      (10) 

Solving (7), (8), (9)  C1 = ï10, C2 = 100, RB = 20; (10)  C  = ï1125  (11) 

EIv(x) = D(x)  ï1125 xï10
1
 +3.333 xï15

3
 ï1.667 xï20

3 
ï1.667 x

3
 + 50 x

2
 (12) 

10
k
 

A B 
C 

10
k
 

A 
C 

10
k
 

A B 
C 

10  5  5  15  5  15  5  

Beam1 Beam2 Beam3 

B 
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Practice Problems on Beam Deflection 

 

2.  Calculate the deflection and rotation at point B [EI = constant]. 

   A          B 

            

       L    M0 

 

3.  Calculate the deflection and rotation at point C [EI = 40,000 k-ft
2
]. 

    100
k
 

A         D           B                  C 

           

           5   5     10  

 

4. Calculate the deflection at C and the rotation at A [EI = constant].  

    

        P/2                         P/2 

        

        

     A          B          C         D           E 

         L/3       L/3       L/3 

     

       L/2 

5. Calculate the deflection at A and the rotation at B [EI = 40,000 k-ft
2
].  

  2
 k
       1

 k
 

 

             A     B          C       D       

        

 

           2        6        4  

6. Calculate the deflection at A [EIAB = 40,000 k-ft
2
, EIBC = 20,000 k-ft

2
].  

                     2
k
/  

                                          

               A                       B      C 

          3        6  

 

7. Calculate the deflection at C [EIAB = EIDE = EI, EIBCD = 2EI]. 

              P       

               

 

   A             B       C         D      E 

      L/3        L/3   L/3 

       L/2 

          

8. Calculate the deflection at D [EI = constant]. 

               P   P 

               

 

              A            B           C             D 

      L/2        L/2   L/2 
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9. Calculate the deflection at C and the rotation at B [EI= 40,000 k-ft
2
]. 

        

                1 k/ft       2
k
 

A             B                   C 

       

10          5  

 

10.  Calculate the deflection at B and rotations at the left and right of B [EI = 40,000 k-ft
2
]. 

 

            2
k
               

               

 

   A           B            C                   D 

       5         5      5  

  

11.  Calculate the deflection at C [EI = constant].  

       P   

                    

  A  B          C   D 

 

 

        L/2           L/2            L 

 

12.  Calculate the deflection at B and rotations at the left and right of B [EI = constant].  

         

                 w/unit length                

  A            B            C 

 

L                       L 

 

 13.  Calculate the reaction at support B [EI = constant].  

           10
k
       

                

A    B          C 

 

        5    15  

                

14. Calculate the deflection at B [EI = constant].  

     P 

       

              

        A  B          C                      D           

        

         L/2        L/2            L 

 

15. Calculate the deflection at B and the rotation at C [EI= 40,000 k-ft
2
]. 

      

                          1.5 k/ft        

     A                   B         C       

 

10             10  
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Beam Deflection Solutions using Singularity Functions 

 

2.  Calculate the deflection and rotation at point B [EI = constant]. 

 

         A                       B 

            

       L             M0 

 

 

EIv
iv
(x)  w(x) = M0 xïL

ï2
*      

EIv (x)  V(x) = M0 xïL
ï1

*
 
+ C1       (1) 

     EIv (x)  M(x) = M0 xïL
0 
+ C1 x + C2      (2)

 

     EIv (x) = S(x)  M0 xïL
1 
+ C1x

2
/2 + C2 x + C3     (3) 

     EIv(x) = D(x)  M0 xïL
2
/2 + C1x

3
/6 + C2x

2
/2 + C3 x + C4    (4) 

S(0) = 0  C3 = 0; D(0) = 0  C4 = 0; V(L) = 0  C1 = 0     (5~7) 

M(L) = 0  M0 + C1 L + C2 = 0  C2 = ïM0     (8) 

     EIv(x) = D(x)  M0 xïL
2
/2 ï M0 x

2
/2      (9) 

     EIv (x) = S(x)  M0 xïL
1
 ïM0 x       (10) 

     v(L)  ïM0 L
2
/2EI; v (L)  ïM0 L/EI      (11~12) 

 

[Instead of V(L) = 0 and M(L) = 0,  

one can use Fy = 0  RA = C1 = 0; MA = 0  C2 + M0 = 0  C2 = ïM0] 

 

3.  Calculate the deflection and rotation at point C [EI = 40,000 k-ft
2
]. 

 

     

A         D           B                  C 

           

           5   5     10  

 

 

EIv
iv
(x)  w(x) = ï100 xï5

ï1
* + RB xï10

ï1
*      

EIv (x)  V(x) = ï100 xï5
0
 + RB xï10

0 
+ C1     (1) 

     EIv (x)  M(x) = ï100 xï5
1
 + RB xï10

1 
+ C1 x + C2    (2)

 

     EIv (x) = S(x)  ï50 xï5
2
 + RB xï10

2
/2

  
+ C1x

2
/2 + C2 x + C3   (3) 

     EIv(x) = D(x)  ï50 xï5
3
/3 + RB xï10

3
/6 + C1x

3
/6 + C2x

2
/2 + C3 x + C4  (4) 

M(0) = 0  C2 = 0; D(0) = 0  C4 = 0; V(20) = ï100 + RB + C1 = 0   (5~7) 

M(20) = 0  ï1500 + 10 RB + 20 C1 = 0      (8) 

D(10) = 0  ï 2083.33 + 166.67 C1 + 10 C3 = 0     (9) 

Solving (7), (8)  C1 = 50, RB = 50       (10) 

(9)  C3 = ï 625         (11) 

     EIv(x) = D(x)  ï16.67 xï5
3
 + 8.33 xï10

3
 + 8.33 x

3
 ï 625 x   (12) 

     EIv (x) = S(x)  ï50 xï5
2
 + 25 xï10

2  
+ 25 x

2
 ï 625    (13) 

     v(20)  6250/40,000 = 0.156 ft, v(20)  625/40,000 = 0.0156 rad   (14~15) 
 

[Instead of M(0) = 0, V(20) = 0 and M(20) = 0,  

one can use MA = 0  100  5 ï 10 RB = 0  RB = 50; A is hinged end  C2 = 0;  

Fy = 0  C1 + RB = 100  C1 = 100 ï 50 = 50] 

100
k 
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4. Calculate the deflection at C and the rotation at A [EI = constant].  

          P/2                   P/2 

          

        

        

     A          B          C         D           E 

         L/3       L/3       L/3 

     

       L/2 

 

EIv
iv
(x)  w(x) = ï P/2 xïL/3

ï1
* ï P/2 xï2L/3

ï1
*      

EIv (x)  V(x) = ï P/2 xïL/3
0
 ï P/2 xï2L/3

0 
+ C1    (1) 

     EIv (x)  M(x) = ï P/2 xïL/3
1
 ï P/2 xï2L/3

1 
+ C1 x + C2    (2)

 

     EIv (x) = S(x)  ï P/2 xïL/3
2
/2 ï P/2 xï2L/3

2
/2 + C1x

2
/2 + C2 x + C3  (3) 

     EIv(x) = D(x)  ï P/2 xïL/3
3
/6 ï P/2 xï2L/3

3
/6 + C1x

3
/6 + C2x

2
/2 + C3 x + C4 (4) 

M(0) = 0  C2 = 0; D(0) = 0  C4 = 0; M(L) = 0  C1 = P/2   (5~7) 

D(L) = ï 8 PL
3
/324 ï PL

3
/324 + PL

3
/12 + C3 L = 0  C3 = ï PL

2
/18   (8) 

EIv(x) = D(x)  ï P/2 xïL/3
3
/6 ï P/2 xï2L/3

3
/6 + Px

3
/12 ï PL

2
x/18  (9) 

D(L/2)  ï P/2 (L
3
/216)/6 + PL

3
/96 ï PL

3
/36  v(L/2)  ï 23PL

3
/1296EI 

 

[Instead of M(0) = 0 and M(L) = 0,  

one can use ME = 0  C1 L ï (P/2) 2L/3 ï (P/2) L/3 = 0  C1 = P/2; A is hinged end  C2 = 0] 

 

5. Calculate the deflection at A and the rotation at B [EI = 40,000 k-ft
2
].  

  2
 k
        1

 k
 

 

             A     B          C        D       

        

 

         2              6        4  

 

 

EIv
iv
(x)  w(x) = ï 2 xï0

ï1
* + RB xï2

ï1
* + RC xï8

ï1
* ï 1 xï12

ï1
*     

EIv (x)  V(x) = ï 2 xï0
0
 + RB xï2

0
 + RC xï8

0
 ï 1 xï12

0
 + C1           (1) 

     EIv (x)  M(x) = ï 2 xï0
1
 + RB xï2

1
 + RC xï8

1
 ï 1 xï12

1 
+ C1 x + C2           (2)

 

     EIv (x)= S(x)  ïxï0
2
 +RB xï2

2
/2 +RC xï8

2
/2 ï1 xï12

2
/2 +C1x

2
/2 +C2 x +C3                (3) 

     EIv(x)=D(x) ïxï0
3
/3 +RB xï2

3
/6 + RC xï8

3
/6 ï1 xï12

3
/6 + C1x

3
/6 + C2x

2
/2 + C3 x + C4   (4) 

V(0) = 0  C1 = 0; M(0) = 0  C2 = 0; V(12) = ï 2 + RB + RC ï 1= 0  RB + RC = 3      (5~7) 

M(12) = ï 24 + 10 RB + 4 RC = 0  10 RB + 4 RC = 24                 (8) 

Solving (7), (8)  RB = 2, RC = 1                (9) 

D(2) = ï 8/3 + 2C3 + C4 = 0; D(8) = ï 512/3 + 36RB + 8C3 + C4 = 0  8C3 + C4 = 296/3  (10~11) 

Solving (10), (11)  C3 = 16, C4 = ï 88/3             (12) 

     EIv (x) = S(x)  ïxï0
2
 + xï2

2
 +1 xï8

2
/2 ï1 xï12

2
/2 +16                        (13) 

     v(0)  C4/40000 = ï 7.33  10
-4
 ft                                         (14) 

v (2)  (ï 4 +16)/40000 = ï3  10
-4
 rad                                  (15) 

 

[Instead of V(0) = 0, M(0) = 0, one can use A is free end  VA = C1 = 0 and MA = C2 = 0.  

Also MC = 0  ï2  8 + RB  6 + 1  4 = 0  RB = 2; Fy = 0  RB + RC = 3  RC = 3 ï 2 = 1] 
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8. Calculate the deflection at D [EI = constant]. 

                P                 P 

               

 

              A            B           C             D 

      L/2        L/2   L/2 

 

EIv
iv
(x)  w(x) = ï P xïL/2

ï1
* + RC xïL

ï1
* ï P xï3L/2

ï1
*      

EIv (x)  V(x) = ï P xïL/2
0 
+ RC xïL

0
 ï P xï3L/2

0 
+ C1    (1) 

     EIv (x)  M(x) = ï P xïL/2
1 
+ RC xïL

1
ï P xï3L/2

1 
+ C1 x + C2    (2)

 

     EIv (x) = S(x)  ï P xïL/2
2
/2 + RC xïL

2
/2 ï P xï3L/2

2
/2 + C1x

2
/2 + C2 x + C3  (3) 

     EIv(x) = D(x)  ï P xïL/2
3
/6 + RC xïL

3
/6 ï P xï3L/2

3
/6 + C1x

3
/6 + C2x

2
/2 + C3 x + C4 (4) 

M(0) = 0  C2 = 0; D(0) = 0  C4 = 0; V(3L/2) = 0  RC + C1 = 2 P   (5~7) 

M(3L/2) = 0  ï P L +
 
RC L/2 + (3L/2) C1 = 0      (8) 

Solving (7), (8)  RC = 2P, C1 = 0                (9) 

D(L) = ï PL
3
/48 + C3 L = 0  C3 = PL

2
/48       (10)      

EIv(x) = D(x)  ï P xïL/2
3
/6 + P xïL

3
/3 ï P xï3L/2

3
/6 + PL

2
x/48    (11) 

v(3L/2)  (ï PL
3
/6 + PL

3
/24 + PL

3
/32)/EI = ï3 PL

3
/32 EI      (12) 

 

[Instead of M(0) = 0, V(3L/2) = 0 and M(3L/2) = 0, one can use  

A is hinged end  C2 = 0; MC = 0  C1 L + (P) L/2 ï (P) L/2 = 0  C1 = 0;  

Fy = 0  C1 + RC = 2P  RC = 2P] 

 

9. Calculate the deflection at C and the rotation at B [EI = 40,000 k-ft
2
]. 

        

                1 k/ft     2
k
 

 A             B                   C 

       

10        5  

 

EIv
iv
(x)  w(x) = ï1 xï0

0
 + 1 xï10

0
 + RB xï10

ï1
* + 2 xï15

ï1
*      

EIv (x)  V(x) = ï1 xï0
1
 + 1 xï10

1
 + RB xï10

0
 + 2 xï15

0 
+ C1   (1) 

     EIv (x)  M(x) = ïxï0
2
/2 + xï10

2
/2 + RB xï10

1
 + 2 xï15

1 
+ C1 x + C2  (2)

 

     EIv (x) = S(x)  ïxï0
3
/6 + xï10

3
/6 + RB xï10

2
/2 + xï15

2
 + C1x

2
/2 + C2 x + C3 (3) 

     EIv(x)=D(x) ïxï0
4
/24+ xï10

4
/24+RB xï10

3
/6+ xï15

3
/3+C1x

3
/6+C2x

2
/2+C3 x+ C4 (4) 

M(0) = 0  C2 = 0; D(0) = 0  C4 = 0; V(15) = ï15 + 5 + RB + C1 + 2 = 0  RB + C1 = 8 (5~7) 

M(15) = ï112.5 +
 
12.5 + 5 RB + 15 C1 = 0  5 RB + 15 C1 = 100    (8) 

Solving (7), (8)  RB = 2, C1 = 6                (9) 

D(10) = ï10
4
/24 + 6  10

3
/6 + 10 C3 = 0  C3 = ï58.33     (10)      

EIv (x) = S(x)  ïx
3
/6 + xï10

3
/6 + xï10

2
 + xï15

2
 + 3 x

2
 ï 58.33   (11) 

     EIv(x) = D(x)  ïx
4
/24 + xï10

4
/24 + xï10

3
/3 + xï15

3
/3 + x

3
ï 58.33 x    (12) 

v (10)  (ï1000/6 + 300 ï 58.33)/40000 = 1.87510
-3
 rad     (13) 

v(15)  (ï50625/24 + 625/24 + 125/3 + 3375 ï 875)/40000 = 11.4610
-3
 ft   (14) 

 

[Instead of M(0) = 0, V(15) = 0 and M(15) = 0, one can use  

A is hinged end  C2 = 0; MB = 0  10 C1 ï (1 10) 5 ï 2  5 = 0  C1 = 6;  

Fy = 0  C1 + RB ï 10 + 2 = 0  RB = 2] 
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10.  Calculate the deflection at B and rotations at the left and right of B [EI = 40,000 k-ft
2
]. 

             2
k
               

               

 

   A           B            C                   D 

       5         5      5  

  

EIv
iv
(x)  w(x) = ï2 xï5

ï1
* + C xï5

ï3
* + RC xï10

ï1
*   

EIv (x)  V(x) = ï2 xï5
0
 + C xï5

ï2
* + RC xï10

0
 + C1             (1) 

     EIv (x)  M(x) = ï2 xï5
1
 + C xï5

ï1
* + RC xï10

1
 + C1 x + C2            (2)

 

     EIv (x) = S(x)  ïxï5
2
 + C xï5

0
 + RC xï10

2
/2 + C1x

2
/2 + C2 x + C3                 (3) 

     EIv(x) = D(x)  ïxï5
3
/3 + C xï5

1
 + RC xï10

3
/6 + C1x

3
/6 + C2x

2
/2 + C3 x + C4   (4) 

M(0) = 0  C2 = 0; D(0) = 0  C4 = 0; M(5) = 0 + 5 C1 = 0  C1 = 0   (5~7) 

M(15) = ï20 +
 
5 RC = 0  RC = 4        (8) 

D(10) = ï 41.67 + 5 C + 10 C3 = 0; D(15) = ï333.33 + 10 C + 83.33 + 15 C3 = 0   (9) 

Solving (8), (9)  C3 = ï33.33, C = 75               (10) 

EIv (x) = S(x)  ïxï5
2
 + 75 xï5

0
 + 2 xï10

2 
ï 33.33                   (11) 

EIv(x) = D(x)  ïxï5
3
/3 + 75 xï5

1
 + 2 xï10

3
/3 ï 33.33 x       (12) 

v (5ï)  (ï33.33)/40000 = ï 8.33 10
-4
 rad; v(5+)  (ï33.33 + 75)/40000 = 1.0410

-3
 rad (13) 

v(5)  (ï166.67)/40000 = ï 4.17 10
-3
 ft       (14) 

 

[Instead of M(0) = 0, M(5) = 0 and M(15) = 0, one can use  

A is hinged end  C2 = 0; BMB = 0  C1  5 = 0  C1 = 0;  

MD = 0  RC 5 ï 2 10 ï C1 15 = 0  RC = 4] 

 

11.  Calculate the deflection at C [EI = constant].  

       P   

                    

  A  B          C   D 

 

 

        L/2           L/2            L 

 

EIv
iv
(x)  w(x) = ïP xïL/2

ï1
* + C xïL

ï3
*   

EIv (x)  V(x) = ïP xïL/2
0
 + C xïL

ï2
*  + C1              (1) 

     EIv (x)  M(x) = ïP xïL/2
1
 + C xïL

ï1
* + C1 x + C2             (2)

 

     EIv (x) = S(x)  ïP xïL/2
2
/2 + C xïL

0
 + C1x

2
/2 + C2 x + C3                  (3) 

     EIv(x) = D(x)  ïP xïL/2
3
/6 + C xïL

1
 + C1x

3
/6 + C2x

2
/2 + C3 x + C4      (4) 

M(0) = 0  C2 = 0; D(0) = 0  C4 = 0; M(L) = ï PL/2 + C1 L = 0  C1 = P/2  (5~7) 

S(2L) = ï9PL
2
/8 + C  +

 
PL

2
 + C3 = 0  C  +

 
C3 = PL

2
/8     (8) 

D(2L) = ï9PL
3
/16 + C  L +2

 
PL

3
/3 + 2C3L = 0  C  +2

 
C3 = ï5PL

2
/48   (9) 

Solving (8), (9)  C3 = ï11 PL
2
/48, C  =17 PL

2
/48             (10) 

     EIv(x) = D(x)  ïP xïL/2
3
/6 + 17 PL

2
xïL

1
/48 + Px

3
/12 ï11 PL

2
x/48      (11) 

v(L)  (ï PL
3
/48 + PL

3
/12 ï11 PL

3
/48)/EI = ï PL

3
/6EI     (12) 

 

[Instead of M(0) = 0 and M(L) = 0, one can use  

A is hinged end  C2 = 0; BMC = 0  C1  L ï P  L/2 = 0  C1 = P/2] 
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12.  Calculate the deflection at B and rotations at the left and right of B [EI = constant].  

 

        w/unit length 

                                

 A             B            C 

 

L                       L  

            

EIv
iv
(x)  w(x) = ï w xï0

0
 + w xïL

0
 + C xïL

ï3
*   

EIv (x)  V(x) = ï w xï0
1
 + w xïL

1
 + C xïL

ï2
*  + C1             (1) 

     EIv (x)  M(x) = ï w xï0
2
/2 + w xïL

2
/2 + C xïL

ï1
* + C1 x + C2           (2)

 

     EIv (x) = S(x)  ï w xï0
3
/6 + w xïL

3
/6 + C xïL

0
 + C1 x

2
/2 + C2 x + C3                (3) 

     EIv(x) = D(x)  ï w xï0
4
/24 + w xïL

4
/24 + C xïL

1
 + C1 x

3
/6 + C2 x

2
/2 + C3 x + C4   (4) 

M(0) = 0  C2 = 0; D(0) = 0  C4 = 0; M(L) = ï wL
2
/2 + C1 L = 0  C1 = wL/2  (5~7) 

S(2L) = ï8 wL
3
/6 + wL

3
/6 + C  +

 
wL

3
 + C3 = 0  C  +

 
C3 = wL

3
/6    (8) 

D(2L) = ï16 wL
4
/24 + wL

4
/24 + C  L + 8 wL

4
/12 + 2C3L = 0  C  +2

 
C3 = ïwL

3
/24  (9) 

Solving (8), (9)  C3 = ï 5 wL
3
/24, C  = 3 wL

3
/8             (10) 

     EIv (x) = S(x)  ï wx
3
/6 + w xïL

3
/6 + 3 wL

3
xïL

0
/8 + wL x

2
/4 ï 5wL

3
/24               (11) 

     EIv(x) = D(x)  ï wx
4
/24 + w xïL

4
/24 + 3 wL

3
xïL

1
/8 + wL x

3
/12 ï 5wL

3
x/24    (12) 

     v (Lï)  (ï wL
3
/6 + wL

3
/4 ï 5wL

3
/24)/EI = ï wL

3
/8EI     (13)  

v (L+)  (ï wL
3
/8 + 3 wL

3
/8)/EI = wL

3
/4EI       (14) 

v(L)  (ï wL
4
/24 + wL

4
/12 ï 5wL

4
/24)/EI = ï wL

4
/6 EI     (15) 

 

[Instead of M(0) = 0 and M(L) = 0, one can use  

A is hinged end  C2 = 0; BMB = 0  C1  L ï wL  L/2 = 0  C1 = wL/2] 
 

13.  Calculate the reaction at support B [EI = constant].  

           10
k
       

                

A    B          C 

 

      5    15  

                

EIv
iv
(x)  w(x) = ï10 xï0

ï1
* + RB xï5

ï1
*   

EIv (x)  V(x) = ï10 xï0
0
 + RB xï5

0
 + C1                 (1) 

     EIv (x)  M(x) = ï10 xï0
1
 + RB xï5

1
 + C1 x + C2                (2)

 

     EIv (x) = S(x)  ï5 xï0
2
 + RB xï5

2
/2 + C1 x

2
/2 + C2 x + C3                        (3) 

     EIv(x) = D(x)  ï5 xï0
3
/3 + RB xï5

3
/6  + C1 x

3
/6 + C2x

2
/2 + C3 x + C4      (4) 

V(0) = 0  C1 = 0; M(0) = 0  C2 = 0          (5~6) 

D(5) = ï 208.33 + 5 C3 + C4 = 0  5C3 + C4 = 208.33        (7) 

S(20) = ï2000 + 112.5 RB + C3 = 0  C3 + 112.5 RB = 2000     (8) 

D(20) = ï 40000/3 + 562.5 RB + 20 C3 + C4 = 0  20 C3  + C4 + 562.5 RB = 13333.33  (9) 

Solving (7~9)  C3 = 312.5, C4 = ï1354.17, RB = 15             (10) 

 

[Statically Indeterminate Structure] 
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14. Calculate the deflection at B [EI = constant].  

      P 

       

              

        A  B          C                       D           

        

         L/2        L/2            L 

 

EIv
iv
(x)  w(x) = ïP xïL/2

ï1
* + RC xïL

ï1
*   

EIv (x)  V(x) = ïP xïL/2
0
 + RC xïL

0
*  + C1              (1) 

     EIv (x)  M(x) = ïP xïL/2
1
 + RC xïL

1
 + C1 x + C2             (2)

 

     EIv (x) = S(x)  ïP xïL/2
2
/2 + RC xïL

2
/2 + C1x

2
/2 + C2 x + C3                  (3) 

     EIv(x) = D(x)  ïP xïL/2
3
/6 + RC xïL

3
/6 + C1x

3
/6 + C2x

2
/2 + C3 x + C4      (4) 

M(0) = 0  C2 = 0; D(0) = 0  C4 = 0       (5~6) 

M(2L) = ï3PL/2 + RC L + 2C1 L = 0  RC + 2C1 = 3P/2     (7) 

D(L) = ï PL
3
/48 + C1 L

3
/6 + C3 L = 0  C1 L

2
/6 +

 
C3 = PL

2
/48    (8) 

D(2L) = ï9PL
3
/16 + RC L

3
/6 + 8C1 L

3
/6 + 2C3 L = 0  RC L

2
/6 + 4C1 L

2
/3 +2C3 = 9PL

2
/16 (9) 

Solving (7~9)  RC = 11 P/16; C1 = 13 P/32; C3 = ï3PL
2
/64            (10) 

     EIv(x) = D(x)  ïP xïL/2
3
/6 + 11 P xïL

3
/96 + 13 Px

3
/192 ï3PL

2
 x/64      (11) 

v(L/2)  (13 PL
3
/1536 ï3 PL

3
/128)/EI = ï23 PL

3
/1536 EI     (12) 

 

[Statically Indeterminate Structure] 
 

15. Calculate the deflection at B and the rotation at C [EI = 40,000 k-ft
2
].  

         

                          1.5 k/ft        

      A                  B         C       

 

10            10  

 

EIv
iv
(x)  w(x) = ï1.5 xï10

0
   

EIv (x)  V(x) = ï1.5 xï10
1
  + C1               (1) 

     EIv (x)  M(x) = ï1.5 xï10
2
/2 + C1 x + C2               (2)

 

     EIv (x) = S(x)  ï1.5 xï10
3
/6  + C1 x

2
/2 + C2 x + C3                  (3) 

     EIv(x) = D(x)  ï1.5 xï10
4
/24 + C1 x

3
/6 + C2 x

2
/2 + C3 x + C4      (4) 

S(0) = 0  C3 = 0; D(0) = 0  C4 = 0       (5~6)  

M(20) = ï75 + 20 C1 + C2 = 0  20 C1 + C2 = 75      (7) 

D(20) = ï625 + 1333.33 C1 + 200 C2 = 0  1333.33 C1 + 200 C2 = 625   (8) 

Solving (7), (8)  C1 = 5.39, C2 = ï32.81              (10) 

EIv (x) = S(x)  ï1.5 xï10
3
/6  + 5.39 x

2
/2 ï32.81 x                   (11) 

     EIv(x) = D(x)  ï1.5 xï10
4
/24 + 5.39 x

3
/6 ï32.81 x

2
/2       (12)    

v (20)  (ï250 + 1078 ï 656.2)/40000 = 4.29710
-3
 rad     (13) 

v(10)  (898.44 ï1640.62)/40000 = ï18.55 10
-3
 ft      (14) 

 

[Statically Indeterminate Structure] 
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Moment-Area Theorems 

 

The moment-curvature relationship  Curvature = M/EI 

For small deflection and slope, Curvature  d
2
v/dx

2 
= d /dx 

d /dx = M/EI  d  = (M/EI) dx      ééééééééééé.(i) 

Integrating Eq. (i) between A and B   d  =  (M/EI) dx  

 B  A =  (M/EI) dx, where  is integration between A and B   éééééé...é.(ii) 

Eq. (ii)  The area under (M/EI) diagram between the points A and B is equal to the change of slope 

between two points. This is the 1
st
 Moment-Area Theorem. 

 

Multiplying both sides of Eq. (i) by x  x d  = x (M/EI) dx      éééééééé(iii) 

Integrating Eq. (iii) between A and B  x d  =  x (M/EI) dx  

 (xB  xA) B  (vB  vA) =  x (M/EI) dx, where  is integration between A and B   ééé...(iv) 

 

 

 

 

 

           

 

 

 

   

 

Example 1: Calculate the tip rotation and deflection of the cantilever beam shown below [EI = const]. 

 

B  A = Area of M/EI diagram between A an B 

 = (  P0L/EI)  L/2 =  P0L
2
/2EI         

 A
 
= P0L

2
/2EI   éééé..(1)       

              

(xB  xA) B  (vB  vA) = (  P0L/EI)  L/2  2L/3 

 L  0 
 

 0 + vA   P0L
3
/3EI 

 vA
 
=  P0L

3
/3EI   éééé..(2) 

 

 

Example 2: Calculate the end rotation and midspan deflection of the simply supported beam shown below. 

 

B  A = (P0L/4EI)  L/2 = P0L
2
/8EI           éééé..(1)      

(xB  xA) B  (vB  vA) = (P0L/4EI)  L/2  L/2        

 L B
 

 0 + 0 = P0L
3
/16EI  

 B
 
= P0L

2
/16EI; Eq. (1)  A

 
=  P0L

2
/16EI ééé..(2) 

 

(xC  xA) C  (vC  vA) = (P0L/4EI)  L/4  L/3 

 L/2  0 
 

 vC + 0 = P0L
3
/48EI         

 vC =  P0L
3
/48EI    ééé....(3) 

L 

B 

(xB xA) B 

(vB vA) 

A 

B 

(xB xA) 

The figure at right shows the geometric 

significance of various terms in Eq. (iv). 

Eq. (iv)  The moment of the area under 

(M/EI) diagram between the points A and B 

(i.e.,  x (M/EI) dx) equals to the deflection 

of A with respect to the tangent at B; i.e., 

tA/B. This is the 2
nd

 Moment-Area Theorem. 

 

tA/B 

P0L/EI 

P0  

L/2 L/2 

A B 

P0L/4EI 

C 

A B 

P0 
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1. Calculate vA using the moment-area theorems [EIAB = 40,000 k-ft
2
, EIBC = 20,000 k-ft

2
].  

 
                               
                                          

                                                                          

           
   3        6  

 

 

 

 

 

 

 

 

2. Calculate C( ), C(+) and vC using the moment-area theorems [EI = constant].  

                       

                    

           

 

 

               

 

 

 

 

 

 

 

 

3. Calculate RB and vA using the moment-area theorems [EI = constant = 40,000 k-ft
2
].  

      10
k
 

                 

                

           

 

                     5               15  

            

 

             

             

             

             

         

 

 

 

 

 

 

2.25 

C A B 

2
k
/  

4.50 

(xC  xB) C  (vC  vB) = ( 4.50)  10
-4
  6/2  6/3 

 6 C 
 

 0 + 0 = 27  10
-4
 

 C 
 
= 4.50  10

-4 
rad              ééééé.(1) 

 

C  B = ( 4.50)  10
-4
  6/2 

 B
 
= 9.00  10

-4
 rad              ééééé.(2) 

 

(xB  xA) B  (vB  vA) = ( 2.25)  10
-4
  3/3  2.25 

 3  9.00  10
-4
 
 

 0 + vA = 5.06  10
-4
 

 vA 
 
= 3.21  10

-3
 ft = 0.0385 in  ...éééé.(3) 

 

       

      

              

 

 

 

P 

A B C D 

L/2 L/2 L 

(xD  xC) D  (vD  vC) = ( PL/2EI)  L/2  2L/3 

 L  0  0 + vC = PL
3
/6EI 

 vC = PL
3
/6EI              ééééé.(1) 

 

D  C(+) = ( PL/2EI)  L/2 

 C(+) = PL
2
/4EI              ééééé.(2) 

 

(xC  xA) C( )  (vC  vA) = (PL/4EI)  L/2  L/2 

 L  C( )  ( PL
3
/6EI) + 0 = PL

3
/16EI 

 C( ) = 5PL
2
/48EI              ééééé.(3) 

 

       

      

              

 

 

 

PL/4EI 

PL/2EI 

A B C 

15RB/EI 

200/EI 

(xC  xB) C  (vC  vB)  

= {(15 RB  200)  15/2  10  50  15/2  5}/EI 

 15  0  0 + 0 = {(15 RB  200)  25}  75/EI 

 RB 
 
= 15 kips 

 

(xC  xA) C  (vC  vA)  

= {225  15/2  (10 + 5)  200  20/2  40/3}/EI 

 20  0  0 + vA = {(15 RB  200)  25}  75/EI 

 vA 
 
=  0.0339 ft =  0.406 in 

 

       

      

              

 

 

 

50/EI 

 M/EI  

(10
-4 

rad/ft) 
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Beam Deflection Solutions using Moment-Area Theorems 

2.  Calculate the deflection and rotation at point B [EI = constant]. 

 

    A                       B 

            

L    M0          M0/EI 

 

 

Between A and B, A = 0, vA = 0 

1
st
 theorem  B A = L  ( M0/EI) = M0L/EI  B  = M0L/EI                    ééé.(1) 

and 2
nd

 theorem  L B vB + vA = ( M0 L/EI)  L/2 = M0L
2
/2EI  vB = M0L

2
/2EI         ééé(2) 

 

3.  Calculate the deflection and rotation at point C [EI = 40,000 k-ft
2
]. 

 

     

   A           D                B                     C 

           

      5         5                10  

 

 

Between A and B, vA = 0, vB = 0 

1
st
 theorem  B A = 10/2  6.25  10

3 
= 31.25  10

3
                    ééé.(1) 

and 2
nd

 theorem  10 B vB + vA = 31.25 10
3
  10/2  B = 15.63  10

3
 rad                 ééé.(2) 

 

Between B and C, B = 15.63  10
3
 rad, vB = 0 

1
st
 theorem  C B = 0  C  = 0.0156 rad                                     ééé.(3) 

and 2
nd

 theorem  10 C vC + vB = 0  vC = 0.156 ft                            ééé.(4) 

 

4. Calculate the deflection at C and the rotation at A [EI = constant].  

    

            P/2                           P/2 

      A                E       

     B   C   D      

 

                   

  L/2   

Using symmetry between A and C, vA = 0, C = 0 

1
st
 theorem  C A = L/6  PL/6EI + L/6  PL/6EI

 
= PL

2
/18EI  A = PL

2
/18EI       ....éé.(1) 

and 2
nd

 theorem  (L/2) C  vC + vA= PL
2
/36 EI  (2L/9) + PL

2
/36 EI  (L/3+L/12)

  
= 23 PL

3
/1296 EI 

 vC = 23 PL
3
/1296 EI                      ééé.(2) 

 

5. Calculate the deflection at A and the rotation at B [EI = 40,000 k-ft
2
].  

         2
 k
                           1

 k
 

 

     A           B                  C              D       

        

 

    2             6              4  

 

Between B and C, vB = 0, vC = 0 

1
st
 theorem  C B = 6  ( 10

4
) = 6  10

4
                             ééé.(1) 

and 2
nd

 theorem  6 C vC + vB = ( 6  10
4
)  6/2  C = 3  10

4
 rad                  ééé.(2) 

(1)  B = 3  10
4
 rad                                        ...éé.(1) 

Between A and B, B = 3  10
4
 rad, vB = 0 

1
st
 theorem  B A = 2/2  ( 10

4
) = 10

4
  A  = 4  10

4
 rad            ééé.(3) 

and 2
nd

 theorem  2 B vB + vA = 10
4
  4/3  vA = 7.33  10

4
 ft                       ééé.(4) 

100
k 6.25  10

3
 rad/ft 

 

PL/6EI PL/6EI 

10
4
 rad/ft 10

4
 rad/ft 

L/3 L/3 L/3 
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7. Calculate the deflection at C [EIAB = EIDE = EI, EIBCD = 2EI]. 

  

                                P       

               

 

         A                  B          C    D             E 

                L/3   L/3            L/3 

 

   L/2 

Using symmetry between A and C, vA = 0, C = 0 

1
st
 theorem  C A= L/4 PL/8EI + L/6 PL/12EI

 
= PL

2
/32EI + PL

2
/72EI 

    A = 13PL
2
/288EI               ééé.(1) 

and 2
nd

 theorem  (L/2) C  vC + vA= PL
2
/32 EI  (L/3) + PL

2
/72 EI  (2L/9)

  
= 35 PL

3
/2592 EI 

 vC = 35PL
3
/2592 EI                      ééé.(2) 

8. Calculate the deflection at D [EI = constant]. 

     P            P 

               

 

          A                  B                      C            D 

                  L/2              L/2       L/2 

 

Between A and C, vA = 0, vC = 0 

1
st
 theorem  C A = L/4  ( PL/2EI) = PL

2
/8EI                            ééé.(1) 

and 2
nd

 theorem  L C vC + vA = ( PL
2
/8EI)  (L/2 + L/3)  C = 5PL

2
/48EI                 ééé.(2) 

Between C and D, C = 5PL
2
/48EI, vC = 0 

1
st
 theorem  D C = L/4  ( PL/2EI) = PL

2
/8EI  D  = 11 PL

2
/48 EI         ééé.(3) 

and 2
nd

 theorem  (L/2) D vD + vC = ( PL
2
/8EI)  L/6  vD = 3PL

3
/32 EI                     ééé.(4) 

9. Calculate the deflection at C and the rotation at B [EI = 40,000 k-ft
2
]. 

        

                           1 k/ft             2
k
 

          A                B        C 

       

     

Between A and B, vA = 0, vB = 0 

1
st
 theorem  B A= 10/2 2.5 10

4
+20/3  3.13  10

4
= (1.25 +2.08)10

3 
= 3.33  10

3
é....(1) 

and 2
nd

 theorem  10 B  vB + vA= 1.25  10
3 

 20/3
 
+ 2.08  10

3 
 5  B =1.875 10

3
 rad ..é.(2) 

Between B and C, B = 1.875 10
3
 rad, vB = 0 

1
st
 theorem  C B = 5/2 2.5 10

4
 = 6.25 10

4 
 C  = 2.5  10

3 
rad                 ééé.(3) 

and 2
nd

 theorem  5 C vC + vB = 6.25 10
4 

 5/3  vC = 11.46  10
3
 ft                     ééé.(4) 

10.  Calculate the deflection at B and rotations at the left and right of B [EI = 40,000 k-ft
2
]. 

           2
k
               

                  

         A                                                             D  

                     5                 5             5          

              

Between C and D, vC = 0, vD = 0 

1
st
 theorem  D C = 5/2 ( 2.5 10

4
) = 6.25  10

4
         ééé....(1) 

and 2
nd

 theorem  5 D  vD + vC = 6.25  10
4 

 5/3  D = 2.08  10
4
 rad      éé...é.(2) 

(1)  C = 4.17  10
4
 rad                                        ...éé.(1) 

Between B and C, C = 4.17 10
4
 rad, vC = 0 

1
st
 theorem  C B(+) = 5/2 ( 2.5 10

4
) = 6.25 10

4 
 B(+) = 1.04  10

3 
rad            ééé.(3) 

and 2
nd

 theorem  5 C vC + vB = 6.25 10
4 

 10/3  vB = 4.17  10
3
 ft                     ééé.(4) 

Between A and B, vA = 0, vB = 4.17 10
3
 ft 

2
nd

 theorem  5 B( ) vB + vA = 0  B( ) = 8.33  10
4
 rad                             ééé.(5) 

 

3.13 10
4
 

PL/2EI 

2.5 10
4
 rad/ft 

PL/6EI 

PL/12EI PL/8EI 

10  5  

2.5 10
4
 rad/ft 

 

B 

 

C 
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12.  Calculate the deflection at B and rotations at the left and right of B [EI = constant]. 

w/unit length 

                                

     A           B                  C 

 

L                       L  

            

Between B and C, C = 0, vC = 0 

1
st
 theorem  C  B(+) = L/2 ( wL

2
/2EI) = wL

3
/4EI  B(+) = wL

3
/4EI       ééé....(1) 

and 2
nd

 theorem  L C  vC + vB = wL
3
/4EI  2L/3  vB = wL

4
/6EI            éé...é.(2) 

Between A and B, vA = 0, vB = wL
4
/6EI 

2
nd

 theorem  L B( ) vB + vA = 2L/3  (wL
2
/8EI)  L/2  B( ) = wL

3
/8EI            ...ééé.(3) 

14. Calculate the deflection at B [EI = constant].  

             P 

       

             

    A            B          C                     D                   

 L/2      L/2          L 

     

Between A and C, vA = 0, vC = 0 

1
st
 theorem  C A = L/2 (RAL/EI) + L/4  ( PL/2EI) = RAL

2
/2EI PL

2
/8EI      ééé....(1) 

and 2
nd

 theorem  L C vC +vA =RAL
2
/2EI 2L/3 PL

2
/8EI 5L/6  C = RAL

2
/3EI 5PL

2
/48EI..é.(2) 

Between C and D, vC = 0, vD = 0 

1
st
 theorem  D C = L/2 (RAL/EI) + L/2  ( PL/2EI) = RAL

2
/2EI PL

2
/4EI      ééé....(3) 

and 2
nd

 theorem  L D vD +vC = RAL
2
/2EI L/3 PL

2
/4EI L/3  D = RAL

2
/6EI PL

2
/12EI é..é.(4) 

(2~4)  (RAL
2
/6EI PL

2
/12EI)  (RAL

2
/3EI 5PL

2
/48EI) = RAL

2
/2EI PL

2
/4EI  

       2RAL
2
/3EI = 13PL

2
/48EI  RA = 13 P/32                           ...é.é.(5) 

(2)  C = PL
2
/32EI                 ..é..é.(6) 

 

  

 

 

 

 

 

15. Calculate the deflection at B and the rotation at C [EI = 40,000 k-ft
2
].  

         

          1.5 k/ft        

      A                  B         C       

 

10            10  

 

 

 

Between A and C, A = 0, vA = 0, vC = 0 

1
st
 theorem  C A = 10  ( 18.75  10

4
) + 10/2  ( 37.5  10

4
) + 10/3  ( 18.75  10

4
) 

  + 20/2  (5RC  10
4
) = 187.5  10

4
 187.5  10

4
 62.5  10

4
 + 50RC  10

4
       

 C = 437.5  10
4 
+ 50 RC  10

4
                ééé....(1) 

and 2
nd

 theorem  20 C  vC + vA = 187.5  10
4

 5 187.5  10
4

 10/3 62.5  10
4

 12.5  

+ 50RC  10
4

 20/3              

 C = 46.88 10
4

31.25 10
4

39.06 10
4
+16.67RC 10

4 
= 117.19 10

4
+16.67RC 10

4
  éé(2) 

(1, 2)  437.5  10
4 
+ 50 RC  10

4
 = 117.19  10

4
 + 16.67 RC  10

4 
 RC = 9.61 kips ...é(3) 

(1, 3)  C = 437.5  10
4 
+ 480.5  10

4
 = 4.297  10

3 
rad          éé..é(4) 

Between B and C, C = 4.297  10
3 
rad, vC = 0 

2
nd

 theorem  10 C vC +vB=10/2 (24.03  10
4
) 10/3+10/3 ( 18.75  10

4
) 10/4=244.25  10

4
 

    vB = 18.55  10
3
 ft                    éé..é(5) 

wL
2
/8EI 

wL
2
/2EI 

PL/2EI 

RAL/EI 

PL/2EI 

13 PL/32EI 
Between B and C, C = PL

2
/32EI, vC = 0 

2
nd

 theorem  (L/2) C vC +vB = PL
2
/8EI L/3  

+13PL
2
/128EI L/4 +13PL

2
/256EI L/3  

= PL
3
/1536 EI 

 vB = 23 PL
3
/1536 EI             éé....é.(7) 

18.75  10
4
 rad/ft 

 

56.25  10
4
 rad/ft 

 

5RC  10
4
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Conjugate Beam Method 

 

From moment-curvature relationship, Curvature  = M/EI  d
2
v/dx

2
      ééééé (i) 

Slope  = dv/dx   (M/EI) dx, and Deflection v =   dx  {  (M/EI) dx} dx     éééé... (ii) 

On the other hand, if w is the load per unit length,  

Shear Force V =  w dx and Bending Moment M =  V dx = {  w dx} dx              éééé.. (iii) 

 

From the analogy of equations (ii) and (iii), if w is replaced by M/EI, the shear force V and bending moment 

M can be considered to be equivalent to slope  and deflection v respectively.  

However, such equivalence should be represented in the support conditions as well, which should be 

modified to form a óconjugateô of the original beam. 

 

 

     Original Beam             Conjugate Beam 

 

 

(a)   

 

          Free end:   0, v  0                       Fixed end: V  0, M  0 

 

 

 

(b)   

 

          Fixed end:  = 0, v = 0                        Free end: V = 0, M = 0 

 

 

             

(c) 

            

 

          Hinged/Roller end:   0, v = 0               Hinged/Roller end: V  0, M = 0 

 

 

            

(d)            

 

 

          Internal Support:   0, v = 0                       Internal Hinge: V  0, M = 0 

 

 

 

(e)             

           

 

          Internal Hinge:   0, v  0                        Internal Support: V  0, M  0 
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1. Calculate C, A, vA using Conjugate Beam Method [EIAB = 40 10
3
 k-ft

2
, EIBC = 20 10

3
 k-ft

2
].  

 
                               
                                          

                                                                          

           
 3                       6  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Calculate C( ), C(+) and vC using the Conjugate Beam Method [EI = constant]. 

 
                               
                                          

                                                                         

           
          L/2  L/2              L 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.  Calculate the reaction at support B [EI = constant].  

       

                
      A                B                     C            A1        B1                               C1 

 
            5    15  

   

               

In the conjugate beam, BMB1 = 0  15/2  15 RB/EI 10 + 15 50/EI 15/2+15/2 150/EI  10 = 0  

            RB = 15 kips                           ééé.(1) 

 

2.25 

C A B 

2
k
/  

4.50 

 M/EI  

(10
-4 

rad/ft) 

2.25  10
-4
 

C1 A1 B1 

4.50  10
-4
 

BMB1 = 0 (right)   RC1  6 + 4.50  10
-4
  6/2  6/3 = 0  RC1 

 
= 4.50  10

-4 
rad  ....é é.(1) 

Fy = 0  RA1  2.25  10
-4
  3/3  4.50  10

-4
  6/2 + RC1 = 0  RA1

 
= 11.25  10

-4 
rad é.(2)     

 

BMB1 = 0 (left)  MA1 + RA1  3  2.25  10
-4
  3/3  (1/4  3) = 0  

 MA1 
 
=  32.06   10

-4
 ft = 0.0385 in               ééé....éé(3) 

 

C = VC1 =  RC1 
 
= 4.50  10

-4 
rad, A = VA1 = RA1 

 
= 11.25  10

-4 
rad  

vA = BMA1 = MA1 
 
= 0.0385 in     

      

              

 

 

 
D A C 

P 

 M/EI 

D1 A1 
B1 

Fy(C1) = 0  VC1(+)  (PL/2EI)  L/2 = 0  VC1(+) = PL
2
/4EI       ééé..(1)     

MC1 = 0 (right)  MC1 + (PL/2EI)  L/2  2L/3 = 0  MC1 =  PL
3
/6EI      ....é é.(2) 

 

MA1 = 0 (left of C1)  

 MC1  (PL/4EI)  L/2  L/2 + VC1( )  L = 0  VC1( ) = 5PL
2
/48EI           ....é é.(3) 

 

C(+) = VC1(+) = PL
2
/4EI, C( ) = VC1( ) = 5PL

2
/48EI  

vC = MC1 =  PL
3
/6EI     

      

              

 

 

 

B 

PL/2EI 

C1 

PL/4EI 

Conjugate Beam loaded by M/EI 

Conjugate Beam loaded by M/EI 

PL/2EI 

PL/4EI 

200/EI 

15RB/EI 

50/EI 

RA1 

MA1 

10
k
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Beam Deflection Solutions using Conjugate Beam Method 

 

2.  Calculate the deflection and rotation at point B [EI = constant]. 

 

     A                        B           A1                   B1  

            

L    M0           

 

 

In the conjugate beam, Fy = 0  RB1  L  (M0/EI) = 0  RB1 = M0L/EI                  ééé.(1) 

and MB1 = 0  MB1 + M0L/EI  L/2 = 0  MB1 = M0L
2
/2EI                              ééé(2) 

B = VB1 = RB1 = M0L/EI, and vB = MB1 = M0L
2
/2EI 

 

3.  Calculate the deflection and rotation at point C [EI = 40,000 k-ft
2
]. 

 

     

   A           D                B                   C          A1                      B1                   C1 

            D1 

      5         5                10  

 

 

In the conjugate beam, BMB1 = 0  RA1 10 + 10/2  6.25  10
3 

 10/2 = 0  

       RA1 = 15.63  10
3
 rad             éé.....(1) 

Fy = 0  RA1 + 10/2  6.25  10
3
  + RC1

 
= 0  RC1 = 15.63  10

3
 rad                 ééé.(2) 

MC1 = 0  RA1 20 + 10/2  6.25  10
3
 15 + MC1

 
= 0  MC1 = 0.156 ft                  ééé.(3) 

C = VC1 = RC1 = 15.63  10
3
 rad, and vC = MC1 = 0.156 ft 

 

4. Calculate the deflection at C and the rotation at A [EI = constant].  

    

            P/2                           P/2 

        

   A                 B   C          D                      E      A1                   B1         C1             D1                 E1 

       

                  L/3             L/3           L/3    

            

                L/2 

 

In the conjugate beam, ME1 = 0  RA1  L + {(2L/3)/2  PL/6EI + L/3  PL/6EI}  L/2 

        RA1 = PL
2
/18 EI            ééé..(1) 

 

 

 

 

 

Section at C1  RA1  L/2 + {(L/3)/2  PL/6EI  (L/6 + L/9) + L/6  PL/6EI  L/12}  MC1
 
= 0   

      PL
3
/36 EI + 5PL

3
/648 EI + PL

3
/432 EI  MC1

 
= 0  

      MC1
 
= 23PL

3
/1296 EI                  ééé...(2) 

A = VA1 = RA1 = PL
2
/18EI, and vC = MC1 = 23 PL

3
/1296 EI 

 

 

M0/EI 

100
k 6.25  10

3
 rad/ft 

 

PL/6EI PL/6EI 

MB1 

RB1 

MC1 

RC1 RA1 

RE1 
RA1 

PL/6EI 
RA1 MC1 

RC1 
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5. Calculate the deflection at A and the rotation at B [EI = 40,000 k-ft
2
].  

                                   

 

      A           B                  C              D             A1      B1                    C1             D1  

        

 

  2             6              4  

 

 

 

 

In the portion B1C1 of the conjugate beam, RB1 = Rc1 = 6/2  10
4 
= 3  10

4 
rad                   é...é..(1) 

In the portion A1B1, Fy = 0  RA1 2/2  10
4
 RB1

 
= 0  RA1 = 4  10

4
 rad               ééé.(2) 

and MA1 = 0  RB1  2 + 2/2  10
4

 4/3 + MA1
 
= 0  MA1 = 7.33  10

4
 ft                 ééé.(3) 

B = VB1 = RB1 = 3  10
4
 rad, and vA = MA1 = 7.33  10

4
 ft 

 

6.  Solution in Class Note.   

  

7. Calculate the deflection at C [EIAB = EIDE = EI, EIBCD = 2EI]. 

  

                                      

               

 

         A                  B          C    D              E            

                L/3   L/3            L/3         A1              B1       C1        D1              E1 

 

   L/2 

In the conjugate beam, ME1 = 0  RA1  L + {(2L/3)/2  PL/12EI + L/2  PL/8EI}  L/2 

        RA1 = 13 PL
2
/288 EI            ééé..(1) 

 

 

 

 

Section at C1  RA1  L/2 +{(L/3)/2  PL/12EI  (L/6 + L/9) + (L/2)/2  PL/8EI  L/6} MC1
 
= 0   

      13 PL
3
/576 EI + 5PL

3
/1296 EI + PL

3
/192 EI  MC1

 
= 0   

      MC1
 
= 35 PL

3
/2592 EI                  ééé...(2) 

A = VA1 = RA1 = 13 PL
2
/288EI, and vC = MC1 = 35 PL

3
/2592 EI 

 

8. Calculate the deflection at D [EI = constant]. 

                  

                      A1               B1               C1             D1  

 

          A                  B                      C            D 

                  L/2              L/2       L/2 

 

In the conjugate beam, BMC1= 0  RA1  L (L/2)/2  (PL/2EI)
 

 L/6 = 0  RA1 = PL
2
/48 EI .é...(1) 

MD1 = 0  RA1 3L/2 L/2  (PL/2EI)
 

 L/2 MD1
 
= 0  MD1 = 3PL

3
/32 EI                ééé.(2) 

vD = MD1 = 3PL
3
/32 EI 

10
4
 rad/ft 

PL/2EI 

10
4
 rad/ft 

PL/6EI 

PL/12EI 

PL/8EI 

2
 k
 1

 k
 

RB1 RC1 RB1 
RA1 

MA1 

MD1 

RD1 

P 
RA1 RE1 

PL/6EI 
RA1 

MC1 
RC1 PL/12EI 

PL/8EI 

P P 
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9. Calculate the deflection at C and the rotation at B [EI = 40,000 k-ft
2
]. 

        

                           1 k/ft             2
k
 

          A                B        C     

     A1     B1                C1 

     

 

 

 

 

 

 

In the portion A1B1, MA1 = 0  RB1  10 10/2  2.5 10
4 

 20/3 20/3  3.13 10
4 

 5 = 0  

     RB1 = 1.875 10
3 
rad                          ééé.(1) 

In the portion B1C1, MC1 = 0  RB1  5 + 5/2  2.5 10
4 

 10/3 MC1 = 0  

     MC1 = 11.46 10
3 
ft                          ééé.(2) 

B = VB1 = RB1 = 1.875 10
3 
rad, and vC = MC1 = 11.46 10

3 
ft 

 

10.  Calculate the deflection at B and rotations at the left and right of B [EI = 40,000 k-ft
2
]. 

                          

                               A1     B1            C1                D1 

         A                                                             D  

                     5                 5             5          

              

 

 

 

 

 

 

 

In the portion C1D1, MD1 = 0  RC1  5 5/2  2.5 10
4 

 10/3 = 0  RC1 = 4.17 10
4 
rad é..(1) 

In the portion A1B1C1, MA1 = 0  RB1  5 + 5/2  2.5 10
4 

 (5 + 10/3) + RC1  10  = 0  

     RB1 = 1.875 10
3 
rad                          ééé.(2) 

For a section at right of B1, Fy = 0  VB1(+)  5/2  2.5 10
4

RC1 = 0  VB1(+) = 1.04 10
3 
rad é(3) 

                                     and MB1 = 0  MB1 + 5/2  2.5 10
4
  10/3

 
+ RC1  5 = 0 

  MB1 = 4.17 10
3 
ft                     ééé.(4) 

For a section at left of B1, Fy = 0  VB1( ) + RB1 = VB1(+)  VB1( )  = 8.33  10
4
 rad        ééé.(5) 

B( )  = VB1( )  = 8.33 10
4 
rad, B(+)  = VB1(+)  = 1.04 10

4 
rad, and vB = MB1 = 4.17 10

3 
ft 

 

11.  Solution in Class Note.   

  

12.  Calculate the deflection at B and rotations at the left and right of B [EI = constant]. 

 

w/unit length 

                                

     A           B                  C           A1                B1                         C1 

 

L                      L  

            

 

In the conjugate beam, MA1= 0  RB1  L 2L/3  wL
2
/8EI  L/2 + L/2  wL

2
/2EI (L+2L/3)= 0  

     RB1 = 3wL
3
/8EI                           ééé.(1) 

For a section at right of B1, Fy = 0  VB1(+)  L/2  wL
2
/2EI = 0  VB1(+) = wL

3
/4EI         .ééé(2) 

                                     and MB1 =0  MB1 + L/2  wL
2
/2EI  2L/3 = 0  MB1 = wL

4
/6EI éé..(3) 

For a section at left of B1, Fy = 0  VB1( ) + RB1 = VB1(+)  VB1( )  = wL
3
/8EI                 ééé.(4) 

B( )  = VB1( )  = wL
3
/8EI, B(+)  = VB1(+)  = wL

3
/4EI, and vB = MB1 = wL

4
/6EI 

 

3.13 10
4
 

wL
2
/8EI 

 

wL
2
/2EI 

10  5  

3.13 10
4
 

C 

 

2.5 10
4 
rad/ft 

2.5 10
4 
rad/ft 

2.5 10
4 
rad/ft 

RA1 RB1 
RB1 

MC1 

RC1 

2.5 10
4
 rad/ft 

 

2.5 10
4 
rad/ft 

2.5 10
4 
rad/ft 

RC1 RD1 
RA1 RB1 RC1 

2
k
 

 B 

 

RA1 RB1 
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13.  Solution in Class Note.   

  

14. Calculate the deflection at B [EI = constant].  

              

       

                                   
    A            B          C                     D                                      B1               C1                      

               
 L/2      L/2          L 

     

In the conjugate beam, BMC1 = 0  RA1  L + L/2  RAL/EI  L/3  L/4  PL/2EI L/6 = 0  

            RA1 = RAL
2
/6EI + PL

2
/48EI                 ééé.(1) 

Also, BMC1 = 0  RD1  L  L/2  RAL/EI  L/3 + L/2  PL/2EI L/3 = 0 

                          RD1 = RAL
2
/6EI + PL

2
/12EI                     ééé.(2) 

Fy = 0  RA1 + RD1 = (2L/2)  RAL/EI + 3L/4  PL/2EI = RAL
2
/EI + 3 PL

2
/8EI       ééé..(3)                 

[(1) + (2)], (3)  RAL
2
/3EI + 5PL

2
/48EI = RAL

2
/EI + 3PL

2
/8EI  

         2RAL
2
/3EI = 13 PL

2
/48EI  RA = 13 P/32                                ééé.(4) 

(1)  RA1 = RAL
2
/6EI + PL

2
/48EI = 13PL

2
/192EI + PL

2
/48EI = 3PL

2
/64EI               ééé.(5) 

 

Section at B1  RA1  L/2 + L/4  RAL/2EI  L/6 MB1
 
= 0   

      MB1
 
= 3PL

3
/128EI + 13PL

3
/1536EI = 23PL

3
/1536EI                         ééé.(6)   

vB = MB1 = 23PL
3
/1536EI 

 

15. Calculate the deflection at B and the rotation at C [EI = 40,000 k-ft
2
].  

         

                  
      A                  B         C       A1                          B1         C1   

 
10            10  

 

 

 

 

In the conjugate beam, MC1 = 0  20/2  5RC  10
4

 40/3 + 10/3  18.75  10
4 

 30/4  

           + 10  18.75  10
4 

 (10+5) + 10/2  37.5  10
4 

 (10 +20/3) = 0  

            666.67 RC = 6406.25  RC = 9.61 kips         ééé.(1) 

Fy = 0  RC1 + 20/2  5  9.61  10
4 

10/3  18.75  10
4 

10/2  (18.75 + 56.25)  10
4 
= 0 

                  RC1 = 4.297  10
3
 rad                     ééé..(2) 

 

Section at B1 (right) 

      RC1  10 10/2  2.5  9.61  10
4
  10/3 + 10/3  18.75  10

4
  10/4 + MB1

 
= 0   

      MB1
 
= 4.297  10

3
  10 + 10/2  2.5  9.61  10

4
  10/3 10/3  18.75  10

4
  10/4  éé.(3)   

                 = 18.55  10
3
 ft 

C = VC1 = RC1 = 4.297  10
3
 rad, vB = MB1 = 18.55  10

3
 ft 

PL/2EI 

RAL/EI 

18.75  10
4
 rad/ft 

 

56.25  10
4
 rad/ft 

 

5RC  10
4
 

P 

D1 A1 

RA1 RD1 

1.5 k/ft 
RC1 
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Buckling of Columns 

 

    

  

 

 

 

 

 

EI v  =  Pv  EI v  + Pv = 0 

 v  + 
2 
v = 0         .éééé...(i)  [where 

2
= P/EI]               

 v(x) = C1 cos x + C2 sin x        .éééé...(ii)              

                    

v(0) = 0  C1 = 0         ..éééé.(iii) 

   v(L) = 0  C2 sin ( L) = 0 

Either C2 = 0  v(x) = C1 cos x + C2 sin x = 0 éééé...(iv), which is the trivial solution  

   Or L = n    = n /L       ..éééé.(v) 

P = 
2 
EI = n

2 2
EI/L

2   
    ..éééé.(vi) 

 

Eq. (vi) provides a set of solutions for the load P in order to cause deflection of the column. The smallest of 

these forces is obtained by putting n = 1, resulting in the critical load of the column as 

Pcr = 
2
EI/L

2   
         ..éééé.(vii) 

 

The critical load shown in Eq. (vii) is also called the buckling load or Euler load of the column, named after 

Leonhard Euler who was the first to derive it. 

 

Eulerôs solution presents the buckling of column as a bifurcation problem; i.e., according to it the column 

would not deflect at all until it reaches the first critical load (= 
2
EI/L

2
), where its deflection is arbitrary. 

After exceeding this load, the column returns to its un-deflected position until it reaches the second critical 

load (= 4
2
EI/L

2
), and so on. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Obviously, the Euler solution is not consistent with the observed structural behavior of axially loaded 

columns. The discrepancy can be attributed to the assumptions in deriving the formula; i.e., that the column 

is perfectly straight, the applied load is concentric, the support condition is pin-pinned, the material follows 

Hookeôs law and that there is no residual stress in the column (which is inappropriate for steel). 

v 
P 

x 

L 

P 
A B 

v v 

x 

v 
P 

A 

v0 

P 

P=
2
EI/L

2
 

P=4
2
EI/L

2
 

P 

M 



 50 

Effect of Initial Imperfection          

 EI (v vi)  =  Pv  EI v  + Pv = EI vi               

 v  + 
2 
v = vi     éééé...(i) [where 

2
= P/EI]              

      

If v i(x) = v0i sin ( x/L)              

vi (x) = ( /L)
2 
v0i sin ( x/L)     .éééé...(ii)                      

(i)  v  + 
2 
v = ( /L)

2 
v0i sin ( x/L)      

 v(x) = C1 cos x + C2 sin x ( /L)
2
/[

2
( /L)

2
]
 
v0i sin ( x/L)  éééé.é(iii) 

v(0) = 0  C1 = 0         ééééé.(iv) 

v(L) = 0  C2 sin ( L) = 0  C2 = 0    ééééé.(v) 

 v(x) = 1/[1 ( L/ )
2
]
 
v0i sin ( x/L)    ééééé.(vi) 

2 
= P/EI  v(x) = 1/[1 P/(

2
EI/L

2
)]

 
v0i sin ( x/L) = v0i/[1 P/Pcr]

 
sin ( x/L) ééé...(vii) 

v(L/2) = v0i/[1 P/Pcr]
 
       éééé...(viii) 

 

Effect of Load Eccentricity (End Moments) 

 EI v  =  Pv  Pe                

  EI v  + Pv =  Pe               

 v  + 
2 
v =  

2
e          éé.é..(i)                                     

        [where 
2 
= P/EI]                           

                  

 

(i)  v(x) = C1 cos x + C2 sin x  e               ééééé(ii) 

v(0) = 0  C1 = e                        é.ééé.(iii) 

   v(L) = 0  C2 sin ( L) = e (1  cos L)  C2 = e tan( L/2)               ..éééé(iv) 

 v(x) = e [cos x  1+ tan( L/2) sin x]           .é.ééé(v) 

v(L/2) = e [cos L/2  1+ tan( L/2) sin L/2]  

 = e [sec L/2  1] = e [sec {( /2) (P/Pcr)}ï1]                 éééé..(vi) 

(v)  EIv (x) =  EI
2 
e [cos x + tan( L/2) sin x] 

        M(x) =  M0 [cos x + tan( L/2) sin x]                 é.ééé.(vii) 

        M(L/2)/M 0 =  [sec( L/2)]                   ...ééé..(viii) 

Fig. 1: Effect of (1) Column Imperfection and (2) Load Eccentricity
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Effect of Material Nonlinearity 

For materials with nonlinear stress-strain relationship, the critical load is Pcr = 
2
 EtI/L

2
  cr = 

2
 Et/

2
 

where Et = Tangent modulus = d/d ; i.e., slope of the stress-strain graph,  = Slenderness ratio 

Example: Calculate cr if  = 40   20 
2
 and  is (a) , (b) 2 , (c) 4 . 

 = 40   20 
2 

 Et = d /d  = 40  40  

40   20 
2 
= 

2
(40  40 )/

2
  

2 
2(1+

2
/

2
)  + 2

2
/

2
 = 0   = (1+

2
/

2
)  (1+

4
/

4
)  éé(1) 

(a)  =   
 
 = 0.586,  = 16.57, (b)  = 2   

 
 = 0.219,  = 7.81, (c)  = 4   

 
 = 0.061,  = 2.35 

If  = 40 , Et = 40 and the corresponding strains and stresses are  

(a)  =   
 
 = 1,  = 40, (b)  = 2   

 
 = 0.25,  = 10, (c)  = 4   

 
 = 0.0625,  = 2.5  

 

Elasto-plastic Material Property 

The material property of an eccentrically loaded beam-column is elasto-plastic; i.e., 

  Bending moment M = EI v, with an upper limit of Mp 

        Pv  Pe = EI v, for the elastic range   ..éé.é..(i)  

and  Pv  Pe =  Mp, for the plastic range   ..éé.é..(ii) 

 

                

                

                                     

                           

                  

 

 

v(L/2) = e [sec{( /2) (P/Pcr)}ï1], for the elastic range éééé.(iii)  

   v(L/2) = Mp/Pïe, for the plastic range    é..éé....(iv) 

 

Example: If EI = 40000 k-ft
2
, L = 20 ft, e = 0.10 ft,  Mp is (a) 200, (b) 100, (c) 50 k-ft. 

Pcr = 
2
EI/L

2 
= 987 kips           éééé.(1) 

For the elastic range, v(L/2)/e = sec{(P/400)} ï 1            éééé.(2) 

and for the plastic range, v(L/2)/e is (a) 2000/P ï 1, (b) 1000/P ï 1, (c) 500/P ï 1      éééé.(3) 
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Effect of End Conditions 

(a) Fixed-Hinged column 

 EI v  = M0 ï Rx ï Pv                            

  EI v  + Pv = M0 ï (M0/L) x        ...éé..(i)     

v(x) = C1 cos x + C2 sin x + [M0 ï (M0/L)x]/P é..é..(ii)       

[where 
2
 = P/EI]                             

v(0) = 0  C1 = ï M0/P           ..ééé(iii) 

   v (0) = 0  C2 = M0/P L        ..ééé(iv) 

v(x) = (M0/P) [ï cos x + (1/ L) sin x + 1 ï x/L]        ééé..(v) 

v(L) = 0  cos L = (1/ L) sin L  tan L = L  ééé..(vi) 

L = 4.49341      .é..é..(vii) 

 P = Pcr = EI
2 
= 20.19 EI/L

2 
= 2.046 (

2
EI/L

2
)  

2
EI/(0.7L)

2
 .éé..(viii) 

 

(b) For a Fixed-Fixed column, similarly derive  

     P = Pcr = 4 (
2
EI/L

2
) = 

2
EI/(0.5L)

2
    .éé...(ix) 

 

(c) Fixed-Free (Cantilever) column 

 EI v  = M0 ï Pv                            

  EI v  + Pv = M0             ...éé..(x)     

v(x) = C1 cos x + C2 sin x + M0/P       é..é..(xi)       

[where 
2 
= P/EI]                             

v(0) = 0  C1 = ï M0/P           ..ééé(xii) 

   v (0) = 0  C2 = 0         ..ééé(xiii) 

v(x) = (M0/P) (1ï cos x)          ééé..(xiv) 

v (L) = 0  
2 
cos L = 0  L = /2              é..éé(xv) 

P = Pcr = EI
2 
= 

2
EI/4L

2
 = 

2
EI/(2L)

2
   .ééé(xvi) 

 

In general, for any support condition, Pcr = 
2
EI/Le

2
 = 

2
EI/(kL)

2
   .ééé(xvii) 

where Le = Effective length of the column = kL, k depends on support conditions at the two ends; i.e., the 

relative stiffness of the compression members and flexural members at the two ends.  

 

Example: Calculate the buckling load in column AB if the frame is (i) braced, (ii) unbraced. 

[Given: EI = constant = 40,000 k-ft
2
] 

 

 

        15  

 

     

 

        18  

    

      

          11         12         10  

         

        (a) Braced    (b) Unbraced 
 

A = (EI/15+EI/18)/(EI/11+EI/12) = 0.122/0.174 = 0.70, B = 0 

For braced frame, k = 0.61, Pcr = 
2
EI/(kL)

2
 = 

2
40000/(0.61 18)

2
 = 3275 kips 

   For unbraced frame, k = 1.12, Pcr = 
2

40000/(1.1218)
2
 = 971 kips 

P P 

R 

R 

M0 

L 

x 

v 

P 
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Design Concept of Axially Loaded Members 

For structural members under compression, the AISC-ASD (AISC  American Institute of Steel 

Construction, ASD  Allowable Stress Design) guidelines recommend the following equations 

Slenderness Ratio,  = Le/rmin, and c = (2E/f y) 

If   c, all = fy [1 0.5 ( / c)
2
]/FS,  

where FS = Factor of safety = [5/3 + 3/8 (/ c) 1/8 ( / c)
3
]                                     éééééé(i) 

If   c, all = (
2 
E/

2
)/FS, where FS = Factor of safety = 23/12 = 1.92            ééééé...(ii) 

Here E = Modulus of elasticity, f y = Yield strength, all = Allowable compressive stress 

A = Cross-sectional area, Le = Effective length of member, rmin = Minimum radius of gyration  

 

The AISC-ASD column design curve is shown in the figure below 

 

 

 

 

 

 

 

 

 

 

 

Example: Calculate Pallow for the column below using the AISC-ASD Method if  

(a) L = 5, (2) L = 10 [Given: E = 29000 ksi, fy = 40 ksi]              

          

c = (2E/fy) = (2 29000/40) = 119.63 

k = 0.7 [Fixed-Hinged], rmin = 1.5 / (12) = 0.433         

(a) L = 5 = 60    = kL/rmin = 0.7 60/0.433 = 96.99 < c 

 cr = fy [1  0.5( / c)
2
] = 40 [1  0.5 (96.99/119.63)

2
] = 26.85 ksi 

FS = 5/3 + 0.375(/ c)  0.125 ( / c)
3
 = 1.90 

 all = cr/FS = 26.85/1.90 = 14.10 ksi  Pall = 14.10  3.0 = 42.30 k 

(b) L = 10 = 120   = kL/rmin = 0.7 120/0.433 = 193.98 > c 

cr = 
2
E/

2
 = 

2
29000/193.98

2
 = 7.61 ksi, and FS = 1.92      

 all = cr/FS = 7.61/1.92 = 3.96 ksi  Pall = 3.96  3.0 = 11.88 k 

 

Problem: Check the adequacy of the truss against buckling using AISC-ASD criteria, if P = 10
k
  

[Given: A = 1.2 in
2
, rmin = 1 , E = 29000 ksi, fy = 40 ksi for all members].    
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Moment Magnification 

 

Concentrated Load at the Midspan of a Simply Supported Beam 

 EI v  =  Pv  Fx/2 (x < L/2)             

 EI v  + Pv =  Fx/2       .éééé.(i)      

Using 
2 
= P/EI             

   v(x) = C1 cos x + C2 sin x  Fx/(2P)     .éééé.(ii) 

v(0) = 0  C1 = 0        éééé..(iii) 

   v (L/2) = 0  C2  cos ( L/2) = F/(2P)  C2 = F/(2P  cos (L)) ééééé.(iv) 

 v(x) = FL/(2P) [sin ( x)/{( L) cos ( L/2)} ï x/L]      ..éééé...(v) 

 M(x) = EI v (x) = (
2 
EI) FL/(4P) [sin ( x)/{( L/2) cos ( L/2)}]  

= (FL/4) [sin ( x)/{( L/2) cos ( L/2)}]       ééééé.(vi)      [Using 
2
= P/EI] 

M(L/2) = (FL/4) [tan ( L/2)/( L/2)]                          éé..éé..(vii) 

 

Moment magnification factor = [tan (L/2)/( L/2)]                          ..é..éé..(viii) 

Similarly, moment magnification factor for simply supported beam subjected to end moments only  

= [sec ( L/2)], as derived earlier                éé..éé..(ix) 

Also, moment magnification factor for simply supported beam under UDL  

= 2 [sec ( L/2) 1]/( L/2)
2
                   .é..ééé.(x) 

The moment magnification factor according to AISC code = 1/(1P/Pcr)       éé..éé..(xi) 
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Buckling of Columns 

1. State the effects of (i) initial imperfection, (ii) load eccentricity, (iii) material nonlinearity, (iv) residual 

stresses on the critical buckling load or buckling characteristics of a slender column under compression. 

  

2. Draw the axial load vs. lateral deflection curve of an ideal column according to Eulerôs formulation. 

Explain why (i) Real columns start bending from the beginning of (axial) loading, (ii) Real columns fail 

at axial loads smaller than the Euler load. 

 

3.  The beam ACB shown below has an initial deflected shape of vi(x) = v0i sin( x/L). If the deflection at C 

for P = 100 kips is 1, calculate the value of v0i and the deflection at C for P = 200 kips [Given: EI = 

4 10
6
 k-in

2
]. 

                     
                                   

                              

              
         15                  15  

 
4.  The beam ACB shown below is subjected to compressive loads (P) applied at both ends at an 

eccentricity of óeô. If the deflection at C for P = 100 kips is 1, calculate the value of óeô and the 

deflection at C for P = 200 kips [Given: EI = 410
6
 k-in

2
]. 

                      
                                   

                              

              
         15                  15  

 

5.  A 5-ft long cantilever column has a 1010  cross-section as shown below and is made of a nonlinear 

material with stress-strain relationship given by  = 4(1 e
100

), where  is the stress (ksi) and  is the 

strain. Calculate the critical load for the column.  

               
 

 

 

 

 

 

 

 

6. The figure below shows cross-sectional areas of two columns. Calculate the critical buckling loads of 

the columns if (i) One end is fixed and the other is free, (ii) Both ends are fixed [Given: Length of 

columns = 10 ft, E = 29000 ksi]. 

    3  

 

 

       

       4    1/4                  4  
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7.  Calculate the Euler loads for columns AB and BC in the frame shown below 

[Given: E = 3000 ksi, EI = constant]. 
 

 

 

         

 

     

 

         

    

      

               15                    18                 12  

         

 

8.  Calculate the buckling load in column AB if the frame is (i) braced, (ii) unbraced 

[Given: EI = constant = 40,000 k-ft
2
]. 

 

 

 12  

 

     

 

 18  

    

      

         

 

 

9.  In the frame shown below, calculate the effective length factor of column AB about x and z-axis and 

determine the minimum allowable compressive force on the column according to AISC-ASD criteria 

[Given: E = 30 10
3
 ksi, fy = 40 ksi, member sections are shown below].  
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10.  Draw the AISC-ASD design curve for steel columns with E = 29000 ksi and yield strength = 36 ksi. 

Show all the relevant details like c, allow at  = 0 and = c on the graph. 

 

11.  Calculate the allowable value of F for the truss shown below using the AISC-ASD criteria  

[Given: The truss members are hollow circular tubes of 4 outside and 3 inside diameter, E = 29000 

ksi, fy = 50 ksi for all members]. 

 
 

                              

 

           

         

 

            

                   

 

    

 

12. In the structure shown below, check the adequacy of the member AB using the AISC-ASD criteria for 

buckling, if P = 100
k
 [Given: AB is a solid circular tube of 4 diameter, yield strength fy = 40 ksi, 

modulus of elasticity E = 29000 ksi]. 

  P 

           

                A   

                 

 

       

 
 

       B                  C  

                    

                

13. In the structure shown below, check the adequacy of the truss against buckling using the AISC-ASD 

criteria, if P = 10
k 
[Given: Area A = 1.2 in

2
, rmin = 1 , Modulus of Elasticity E = 29000 ksi, yield strength 

= 40 ksi, for all members].    
    

            P              a 

 

           

                     8  

                               

             b        c          d 

                   

             8              8  

         

14.  Check the adequacy of the structure shown below against buckling if P = 20
k
. Use a factor of safety of 2 

and assume ends A, B and C are all hinged [Given: AB is a solid tube of 3 diameter, BC is a cable of 

1/8  diameter, modulus of elasticity E = 29000 ksi]. 

 

                         C           

 

 

             

                        20
k
 

                   

 

          A                 B 
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15. What is ómoment magnification factorô? What are the steps involved in calculating the moment 

magnification factor of a typical column in a multi-storied building? 

 

16. Using the AISC moment magnification factor (with Cm = 0.85), calculate the bending moment at the 

mid-span C of the simply supported beam shown below if  

(i) P = 0, and (ii) P = 300
k
 [Given: E = 3000 ksi, I = 1728 in

4
]. 

 
            

                                     

P         P                    

                         

                        

 

17.  For the simply supported beam shown below, calculate 

(i)  the allowable axial load using the AISC-ASD method 

(ii)  the bending moment at the mid-span C  

[Given: E = 29000 ksi, fy = 60 ksi, A = 10 in
2
, Imin = 90 in

4
]. 

 

            

                                  

                             

                         

           10              10  

 

 

18.  For the beam ACB shown below, compare the deflections at C for P = 0 and P = 200 kips, if  

(i)  F = 0 but the beam has an initial deflected shape of vi(x) = v0i sin( x/L), where v0i = 1 in,  

(ii) F = 10 kips and the beam is perfectly straight initially [Given: EI = 410
6
 k-in

2
]. 

 

                      
                                   

                              

              

         15                  15  
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Solution of Midterm Question  

1.                  

                                                  

                             

           

                      
         5       5                 10   

                                

           

             

             

             

              

 

 

In the conjugate beam, BM at C1 = 0  (2/3) 31.25 10
-5

10 5  10 RD1 = 0  

        RD1 = 104.17 10
-5
 rad            éééééé.(1) 

In the separated beam C1D1, RC1 = 104.17 10
-5
 rad 

In the separated beam A1B1C1, R C1 = 104.17 10
-5
 rad              éééééé.(2) 

 BM at B1 = 104.17 10
-5

5 = 520.83 10
-5
 ft 

 vB = 520.83 10
-5
 ft = 0.0625                    éééééé.(3) 

 

2.  Moment-Area Theorem:  

Using 1
st
 theorem between C and D  D  C = (2/3) 31.25 10

-5
10 = 208.3310

-5
 rad   .....éé(1) 

Using 2
nd

 theorem between C and D  (xD  xC) D  vD + vC = (2/3) 31.25 10
-5

10 5  

                            10 D  0 + 0 = 104.1710
-4 

 D = 104.17 10
-5
 rad  é..é.(2) 

                                                                (1)  C =  104.17 10
-5
 rad               é..é.(3) 

Using 1
st
 theorem between B

(+)
 and C  C  B(+) = 0        éééé.(4) 

Using 2
nd

 theorem between B and C  (xC  xB) C  vC + vB = 0  

                           5 C  0 + vB = 0  

           vB =  5 C = 520.83 10
-5
 ft = 0.0625        éé....é(5) 

 

Singularity Function: 

EIv
iv
(x)  w(x) = C xï5

ï3
*
 
+RC xï10

ï1
* ï1 xï10

0
     

EIv (x)  V(x) = C xï5
ï2

*
 
+RC xï10

0
 ï1 xï10

1 
+ C1            éé....é(1) 

     EIv (x)  M(x) = C xï5
ï1

*
 
+RC xï10

1
 ï1/2 xï10

2 
+ C1 x + C2           éé....é(2)

 

     EIv (x) = S(x)  C xï5
0 
+RC/2 xï10

2
 ï1/6 xï10

3 
+ C1x

2
/2 + C2 x + C3           é...éé(3) 

EIv(x) = D(x)  C xï5
1
+RC/6 xï10

3
ï1/24 xï10

4 
+C1x

3
/6 +C2x

2
/2 +C3 x +C4      éé....é(4)  

      M(0) = 0  C2 = 0             éééé.(5) 

M(5) = 0  5C1 = 0  C1 = 0           éééé.(6) 

M(20) = 0  10 RC ï 50  = 0  RC = 5          éééé.(7) 

D(0) = 0  C4 = 0              éééé.(8) 

D(10) = 0  5C  + 10 C3 = 0           éééé.(9) 

D(20) = 0  15 C  + 833.33 ï 416.67  + 20 C3 = 0  15 C  + 20 C3 = ï 416.67     ééé...(10) 

Solving (9), (10)  C3 = 41.67, C  = ï83.33                        ..ééé.(11) 

EIv(x) = D(x)  ï83.33 xï5
1
 +0.8333 xï10

3
 ï0.04167 xï10

3 
+ 41.67 x        ..ééé.(12) 

v(5) = D(5)/EI  41.67 5/(40 10
3
) = 520.83 10

-5
 ft = 0.0625            éé....é(13)  

EI = 40 10
3
 k-ft

2
 

1 k/  

A C D B 

31.25 10
-5
/  

A1 C1 D1 B1 Conjugate Beam 

loaded by M/EI 
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3. Le = 2 5 12 = 120 in, A = 1010 = 100 in
2
, rmin = 10/ 12 = 2.887             éééééé(1) 

  = Le/rmin = 41.57 

 = 4(1  e
100

)
 

 Et = d /d  = 400 e
100

 

4(1  e
100

) = 
2

400 e
100

/
2
 = 

2
400 e

100
/(41.57)

2 
 1  e

100
 = 0.571 e

100
 

 e
100

 = 1/1.571  e
100

 = 1.571   = 4.52 10
3
              éééééé(2) 

cr = 4(1  e
100

) = 4(1  e
0.452

) = 1.454 ksi  

 Pcr = 1.454 100 = 145.4 kips                           éééééé(3) 

 

4.  

 

                              

 
           

         

            

                   

 
    

 

The only compression members in the truss are U1L0 and U1L2  

Each of them is 14.14 long and under compressive force of 0.707F 

A = (4
2

3
2
)/4 = 5.50 in

2
, Imin = (4

4
3

4
)/64 = 8.59 in

4
  rmin = (8.59/5.50) = 1.25 

  = Le/rmin = 14.14 12 /1.25 = 135.76 and c = (2E/fy) = (2 29000/50) = 107.00 

 c  all = (
2
E/

2
)/FS = (

2
29000/135.76

2
)/1.92 = 8.09 ksi 

Pall = all A = 8.09  5.50 = 44.46 kips 

0.707Fall = 44.46  Fall = 62.88 kips 
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