Chapter 5

Response Analysis for Multi Support Earthquake
Excitation

5.1 Introduction

It is very important to perform the dynamic anadydor the structure subjected to
random/dynamic loadings. The dynamic analysis fcstires mainly involves the response
spectrum analysis and time history analysis. In esahthe structures having very large
spans, the effects of ground motion at differempsuts may be different and in such cases it
is necessary to perform the time history analysissitlering the effects of time delay of
earthquake ground motions. This chapter deals thdhderivation of equations of motion for
single and multi degree of freedom systems sulijeictesingle and multi support earthquake
excitations. Further, a step by step procedureptaeed to calculate the numerical response
by using state space method.

5.2. Equations of Motion for Single Degree of Fraed(SDOF)
System subjected to Earthquake Excitation

Consider a SDOF system as shown in Figure 5.1,hnikisubjected to an earthquake ground
motion. Four types of forces will be acting on thass as follows,

i) Inertial force ;)

i) Stiffness force Ks)
iii) Damping force kp)
iv) External force £z)

k)2 k)2

/7777
> x, (1)

Figure 5.1 (a) SDOF system (b) Lumped mass mod8D&dF

In Figure 5.1 (a), the SDOF system is represented Imass at the top of a column. The
rotation and vertical deflection at the end of twumns are ignored. Also, the floor is
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assumed to be axially rigid. Figure 5.1 (b) repneséhe lumped mass distribution of SDOF
system (Chopra, 2007; Clough and Penzien, 1993a[2@10).

From Newton’s law, where the sum of forces is eqoidhe mass time acceleration,

Stiffness force K;): This force acts on the floor when there is &rat displacement of the
mass. For a linear system, this force is directhypprtional to the relative displacement of
the top and bottom ends of the column.

Damping force K): This force acts on the floor when there is atreé lateral velocity
between the mass and the ground. For a linear wasctamping, this force is directly
proportionally to the velocity and the constanpadportionality is the damping coefficient.

External force F%): This force is an external force applied to thstem.
Inertial force €;): This represents the inertial force due to theebaration of the floor.

As shown in Figure 5.1 (b)x‘(t) is the absolute displacement of mass ap@) is the
absolute displacement of the ground. The relatigplaicement between the mass and the
ground is denoted hy(t).

x(t) = xH(t) — x4(1)
x(t) = x1(t) — x4(1) (5.2)
X(t) = x1(t) — %4(t)

Hence, the stiffness force,
F= —kx(t) = —k{x*(t) — x,(®)} (5.3)

Similarly, the damping force,
Fp= —cx(t) = —c{x'(t) — %,()} (5.4)

The inertial force is mass times the absolute acatbn.

Hence,
F = mxt(t) = m{x(t) + %,(t)} (5.5)

Now, Rewriting Equation (5.1) in form of above etioas,
—kx(t) — —cx(t) = m{#() + %,;(6)} (5.6)

Therefore,
mi(t) + cx(t) + kx(t) = —miy(t) (5.7)

Equation (5.7) is defined as the equation of motarthe SDOF system, subjected to ground
acceleratiori (t).
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where,

m = mass of the system

¢ = damping coefficient of the damper system

k = stiffness of the structural system

x = relative displacement of mass with respect tmgd/support

x = relative velocity of mass with respect to grotsoghport

X = relative acceleration of mass with respect tmgd/support

X, = ground acceleration

Now, Substituting Equation (5.2) in Equation (5and rearranging the terms,

mxt(t) + cx'(t) + kxt(t) = cxy(t) + kx4(t) (5.8)

Equation (5.8) is defined as the equation of motarthe SDOF system, subjected to ground
acceleratiork, (t) in terms of absolute (total) motion of the mass.

5.3 Response of SDOF System: Solution by StateeSigathod

The equation of motion for SDOF system as derivadiez in Equation (5.7) may be
rewritten as,

mi(t) + cx(t) + kx(t) = Fg(t) (5.9)

where,Fg is the external force. Now, dividing Equation (5u@th mass ‘m’,

#0+ S w0 + 5w = O (5.10)
m m m

Replacinge = 2émw, and % = wy? in above equation,

Thus,

¥(t) + 28wq x(t) + wy? x(t) = F’;(f) (5.11)

State space method analyzes the response of thEmsysing both the displacement and
velocity as independent variables and these vasaste called states. The two independent
response variables are expressed as state veatdich can be written as, (Hart and Wong,
2000)

_ (x(®)
2(t) = {x (t)} (5.12)
Further, Equation (5.11) can be written in mataxnh as follows (Hart and Wong, 2000),
o _(x@Y_ [ O 1 x(t)} { 0 }
20 = i} = w260l i) * traco/m (-13)
Simplifying the above equation by substituting thidowing equations,
—we? = — = = —m~'k and—2{w, = —2¢ (ZELm) = —mlc (5.14)
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Hence, Equation (5.13) will be,

OB R 154 I
z(t) =Az(t) + F(t) (5.16)

Equation (5.16) is the®order linear matrix differential equation of matiand is called as
continuous state space equation of motion.

In general, the solution for any time> t,, where t,’ represents the time when the initial
displacement and velocity are given , can be writg, (Hart and Wong, 2000)

t
z(t) = eAlt-toz(¢,) + et fe““s F(s)ds (5.17)

to

In the above equation, the mat@dt is called state transition matrix and has the same
dimension asA’ matrix. If the initial conditions are given at tinegual to zero (i.et, = 0),
then

t
z(t) = ellzy + je“’(t‘s) F(s)ds (5.18)
0

In the above Equation (5.18), th& fiart is the homogeneous solution with initial citiod
taken into considerations antf part is the particular solution which is expresseterms of
time-integration of forcing function.

_ _ x(O) _ Xo
where, z,=12z(0) = {X(O)} = {xo} (5.19)
Let tk+1=t, tk =t0, At =t — tO

Hence,
tk+1

Zp,, = edlz, + eAtkn J- e 45 F(s)ds (5.20)
tk
The objective of the numerical analysis using th&egration method is to integrate the
forcing function as given in Equation (5.20). Sirtbe forcing function is usually given in

digitized for, approximation of this forcing funeti within the time interval is necessary.
Two methods are used to integrate the forcing fandHart and Wong, 2000).

(1) Delta forcing function method
(i) Constant forcing function method

In delta forcing function method, the forcing fuioct is digitized using a series of delta
functions. The forcing function is represented by,
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F(S) = Fk 5(S—tk)At = { 5(s—tk)At ; tk <s < tk+1 (521)

Fk(}m}

Substituting Equation (5.21) into Equation (5.20),

tk+1
Zyyr = etz + eflin J- e S F,.6(s — t, )Atds (5.22)
9%
tk+1
Zipyr = eAtZk + etk f e 4s 6(s — t)ds|F.At (5.23)
tk
Zpy, = ez, + el e AkFy At (5.24)
Zipy1 — eAAtZk + AteAAtFk (525)

In constant forcing function method, the forcingdtion is assumed to be constant within the
time interval. The value of the force in the intdris equal to the values of the force at the
beginning of the interval.

Therefore,
F(s) = F, = {Fk‘}m} Dt €5 S s (5.26)
Substituting Equation (5.26) into Equation (5.2(3),
k+1
Zp,, = etz + eltkn j e 45 F.ds (5.27)
9%
Zyy, = ez + e+ 471 (e Atk — e~ Atk+1)F, (5.28)
Zy, = ez + A7 (e4% — DF,, (5.29)

Now, considering the earthquake ground excitatm®8DOF system, the forcing function is
given by,

Fk = —may (530)
where,a;, is the ground acceleration at time skep

The external force vector,

e b Ll (23 e o

Substituting Equation (5.31) into Equation (5.29),
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Zp = etz + A7 (e44t — I){ 0 }ak (5.32)

-1
Zpy1 = Agzy + Egay (5.33)
where, Ay = el (5.34)
E;= At (e - DE (5.35)
(0

E={" 1} (5.36)
Zypyr = AZgyq + Eagyy (5.37)

where,

Xk . x

Zipi1 = {xkii} and Zipiq — {xiii} (538)

Equations (5.33) and (5.37) will give the solutiohequation of motion in terms of the
response quantities, displacements, velocity andlaation (Hart and Wong, 2000).

5.4 Effects of Support Excitations

It is very important to perform dynamic analysis the structures subjected to earthquake
induced ground motions. The support induced vibreaticause deformations and stresses in
the structural systems. The support excitationsbeadivided into two types:

(1) Single-support excitation

(i)  Multi-support excitation
In single-support excitation, it is assumed thhtred supports undergo an identical (uniform)
ground motion. In other words, due to the same rtamotion at all supports, the supports
move as one rigid base as shown in Figure 5.2. ¢jetle masses attached to dynamics
degrees of freedom are excited by the ground mofon example, tall buildings, towers,
chimneys etc. for which the distances between tipparts are not very large compared with
the predominant wave length of the ground motiomofia, 2007; Datta, 2010)

— X3

— X1

/77777 /7777 /7777
<«> «> <«>

Xq(t)
Figure 5.2 A system subjected to single-supporitaan
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In multi-support excitations, the ground/supporttiomms or excitations are different at

difference supports as shown in Figure 5.3. Forstdmae travelling wave of an earthquake,
the time histories of ground motion at two suppodsld be different if the two supports are
separated by a large distance. This is the cassubedhe travel time of the wave between
any two supports is not sufficiently negligible toake the assumption that the ground
motions are the same at the two supports. For ebesmipig network of pipe lines, very long

tunnels, long dams, bridges etc. Although the gipimay not be especially long, its ends are
connected to different locations of the main suitetand would therefore experience
different motions during as earthquake (Chopra,720&tta, 2010).

— Xy

/7777 /7777 /7777
<> <> <>

J.C'gl(t) jC.gz(t) J.C'g3 (t)
Figure 5.3 A system subjected to multi-support &icins

5.5 Equations of Motion for MDOF System with Singapport
Excitation

For single-support excitation, the same earthqumkand motion excites all the masses. As
discussed in Section 5.2, the Equation (5.7) iseteation of motion for SDOF system,
which can be extended for the multi degree of foeesisystem (MDOF) as follows:

Mx(t)+ Cx(t) + Kx(t) = —MT x4(t) (5.39)
where,
n is the number of degrees of freedom
r is the number of components of input ground mmotio
M is the mass matrix of the system of sizem
K is the stiffness matrix of the system of sizem
C is the damping matrix of the system of sizem
x is the relative displacement vector of size
x is the relative velocity vector of sizexri
X is the absolute acceleration vector of sizeln
X4 is the ground acceleration vectarsize rx 1
I' is the influence coefficient matrif size nx r

For example, for the single component of earthquakeand motion,x, = X,
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5
for the two component of earthquake ground motibp= {jc.gl}
g2

xgl

and, for the three component of earthquake groumiibm X, = { %42

xg3

I' is the influence coefficient matrix of sizexrr, having ‘1’ for elements corresponding to
degree of freedom in the direction of the appliesugd motion and ‘0’ for other degree of
freedom

For example, for two storey lumped mass systembarte 2 degrees of freedom system
with single component of ground motiof, = [ﬂ

with two component of ground motiod; = [é (1)

and, with three component of ground motidh=

SO
S = O
- o O

5.5.1 Equations of Motion in State Space for MDO¥st8m with Single-
Support Excitation and its Solution

Equation (5.7) represents the equation of motiorSOF system and it can be expressed in
form of state space as shown in Equation (5.16)a Isimilar way, the Equation (5.39)
represents the equations of motion for MDOF systeemyvhich the state space expression
can be extended as follows (Hart and Wong, 2000).

z2= [—Mo‘lK —Ml-lc] {;8}+ {—19539} (5.40)

h z=Az+ f (5.41)
wnere,

Z= {iﬁ} A= [_Mo—lK _Ml-lc] z= {fc} f= {_,qxg} (5.42)

The above Equation (5.42) is the state space fdriBgoation (5.39) in terms of relative
motion of the mass.

Further, the equations of motion as defined in EHqua(5.39) can be further extended in
terms of absolute (total) motion of the mass amait be written as,

Mit+ Cxt+Kx' =Ci,+ Kx, (5.43)

where,
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Absolute (total) displacement’ = x + x4
Absolute (total) velocity, x* = x + x4 (5.44)
Absolute (total) acceleratiofi! = x + X,

Rewriting Equation (5.43) in state space form asubsed earlier (Hart and Wong, 2000),

= Lot —wnd G+t utid () (6.49

2= A"+ Ff (5.46)
where,

ot 5ct . _ 0 1 Lot xt .
z = {xt} A= [—M—lK —M-lc] j = {xt} ’
_ 0 0 1. ,0_ ("9
F= [M—ll( M‘lc]’ = {xg}
The above Equation (5.46) is the state space fdrigaation (5.43) in terms of absolute

(total) motion of the mass. The solution of aboeevikd equation of motion can be obtained
by using the procedure as defined in Section Sr&jube Equations (5.33) and (5.37).

(5.47)

5.6 Equations of Motion for MDOF System with MuBupport
Excitations

In the case when a linear elastic structure is aup@ at more than one support and is
subjected to different input ground motions, tharfolation of the response to each input
component is different from a system having unif@uapport excitation. The difference is
that when the multiple supports move independeuoitlgach other, they induce quasi-static
stresses that must be considered in addition talyhamics response effects resulting from
inertial forces. The frame as shown in Figure Bgresents the various degrees of freedoms
(Chopra, 2007; Datta, 2010).

Super structure / Non-support
degree of freedonx’

/7777 /7777 /7777

- _/
'

Support degree of freedom,

Figure 5.4 A frame representing the degredseefiom

For the system with single-support excitation, tittal displacement of the super structure is
obtained by adding the input ground motion to #dative displacements of the structure with
respect to the supports. This relationship is givgn

xt(t) = x() + {Lxy(t) (5.48)
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where, the vectof1} expresses the fact that a unit static translatibnhe base of the
structure produces directly a unit displacemerallioflegrees of freedom.

For the system with multi-support excitations, whehe relative displacements are not
measured parallel to the ground motion, the supputions at any instant of time are
different for the various supports and therefone, total displacements of the super structure
/ non-support degrees of freedom may be express#tkasum of the relative displacements
of the structure with respect to the supports drel quasi-static displacemengs,) that
would result from a static-support displacement ffog displacements produced at non-
support degrees of freedom due to quasi-staticamgtof the supports) (Chopra, 2007;
Clough and Penzien, 1993; Datta, 2010).

xt(t) = x(t) + x4(0) (5.49)

The quasi-static displacements can be expressedki@mtly by an influence coefficient
vector T’ which represents the displacements resulting frieeunit support displacements.

Thus, x, = I'xg (5.50)
and xt=x + I'x, (5.51)

where,I is an influence coefficient matrix of sizexm
In which n is the number of super structure norpsuts degree of freedom and r is the
number of components of input ground motion

The equations of motion for MDOF system with maltipport excitations can be written as
follows (Chopra, 2007; Datta, 2010),

m et e callE e l)- )
[Mgs Mgg kg " Cgs ng Xg * KQS Kgg Xg B Pg (552)

where,

M, is the mass matrix corresponding to super stradtaon-support degrees of freedom
M,, is the mass matrix corresponding to support degoééreedom

M, and My, are the coupling mass matrices that expressedntiiéia forces in super
structure degrees of freedom of the structure dumedtions of the supports

The terms of damping and stiffness matrices armel@fin similar ways

xt is the vector of total displacements corresponttinguper structure degrees of freedom
x4 is the vector of input ground displacements atstigports

xt, x, , Xt X4 are the velocity and accelerations vectors defineimilar ways

P, is the vector of forces generated at the suppaness of freedom.
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In Equation (5.52), no external forces are appkéong the super structure degrees of
freedom and the matriced, € and K can be determined from the properties of structure.
Further, to write the governing equations in a fosimilar to the formulation for single
support excitation as per Equation (5.51) and hessgarating the displacements into two
parts,

-6+ 6 (5.53)

In the above equation, vectoy is the vector of structural displacements, due tadics
application of the prescribed support displacemenjsat each time instant. To find the

quasi-static displacements,, produced due to the support displacemeryshe quasi-static
equation of equilibrium can be written as (Cho@@07; Datta, 2010),

i )= (e (5:5)

gs

where,P,* are the support forces necessary to statically smplisplacements;, , that vary
with time. Further,PgS = 0, if the structure is statically determinate ortlife support
undergoes rigid body motion.

From Equation (5.54),
Kexs + Koy xg =10 (5.55)
Simplifying the above equation gives,
x;=Tx, (5.56)
where, r = -k, 'K (5.57)

Equation (5.56) is showing the quasi-static disphaents,x; , in terms of the specified
support displacements. Further, substituting Equation (5.56) into (5.55),

(Kss T + Kyg) X5 =0 (5.58)

Now, to calculate the response of non-support asgoe motion the following equation can
be written from Equation (5.52),

Mo '+ Mggxg + Cos X'+ Cogig+ Kss x* + Ky xg =0 (5.59)

Hence, Mg X'+ Cos &' + Koo x* = —Mgg Xy — Csg kg — K X, (5.60)

In most cases, there are few non-zero terms imtes coupling matrix and damping matrix,
and when present they are generally relatively siemadl hence those two terms usually
contributes little and hence can be ignored.

Therefore, Mg it + Css &' + K x* = —K; x, (5.61)
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Now, substituting Equation (5.51) and its simil&locity and acceleration components into
Equation (5.60),

Mg %+ Css X+ Kssx = —(Mgg + TMg)%, - (Csg + TCss)iy — (Ksy + TKy) x5 (5.62)

As derived earlier in Equation (5.58K, ' + K ;) x, = 0 and the ternM,, denoting the
inertia coupling which can be neglected for mosudtres. Another assumption for
neglectingM;,, is that for structures with mass idealized as |wingiethe degree of freedom,
the mass matrix is diagonal, implying ttigt, is null matrix andM,; is diagonal. Also, the
contribution of the damping ter(t,, + I'C,)x, is very small and can be neglected.

Hence, Mgk + Cs X+ Kgs x = —MyT'X, (5.63)

The above Equation (5.63) is the equations of mofay the MDOF system subjected to
multi-support excitation and is similar in a formthv Equation (5.44) of SDOF system
subjected to single-support excitation. The makrbor a single support excitation is obtained
straight away whereas, for multi-support excitadiagnis obtained from a static analysis of
structure for relative movements.

5.6.1 Equations of Motion in State Space for MDO¥st&8m with Multi-
Support Excitations and its Solution

Equation (5.63) represents the equations of mdiorMDOF system subjected to multi-
support excitations, for which the state space esgon can be expressed as follows (Hart
and Wong, 2000).

2=y, —mtc) {§E§§}+ {—Igig} (5-64)
z=Az+ f (5.65)

where,
= (= [, i )ie= @=L (569

The above Equation (5.65) is the state space fdriBgoation (5.63) in terms of relative
motion of the mass. The solution of above derivgdation of motion can be obtained by
using the procedure as defined in Section 5.3 uki@dequations (5.33) and (5.37).

Further, the equations of motion as defined in Hqua(5.63) can be further extended in
terms of absolute (total) motion of the mass amait be written as,
Mg &'+ Coi" + Koo xt = — Koy x4 (5.67)

where,
Absolute (total) displacement’ = x + x4
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Absolute (total) velocity, x* = x + x4 (5.68)
Absolute (total) acceleratio! = x + X,

Rewriting Equation (5.67) in state space form asubsed earlier (Hart and Wong, 2000),

7= 0 I ]{x(t)}+ { 0 } (5.69)

_Mss_les _Mss_lcss X(t) _ngMss_lxg

z=Az+ f (5.70)
where,

(5.71)

The above Equation (5.71) is the state space fdrigaation (5.67) in terms of absolute
(total) motion of the mass.

5.7 MATLAB Steps for Computing the Response

Step 1:

Generate the mass matrix by modeling the systetheakimped mass model or continuous
system model. Mass matrix will (= M) of size nx n. where ‘n’ is the number of super
structure / non-support degrees of freedom.

Step 2:

Generate the overall stiffness mati using the static analysis procedure by calculatieg
stiffness influence coefficients. As discussed iearin Section 5.6, the general form of
stiffness matrix will be as follows,

K :ng
Ky = [ ————— ] 5.72
T K,s Kgq ( )

Recall again, ‘n’ is the number of super structunen-supports degrees of freedom, whereas
‘r' is the number of components of input ground imoet(or number of support degrees of
freedom). Hence, size &, will be ‘n x n’, size ofK, will be ‘n x ', size of K, will be ‘r

x ', size ofK ;, will be ‘r x ' and the overall size d will be ‘(n +r)x (n +r)".

Step 3:

Calculate the eigen values and natural frequerfaigs

Step 4:
Generate the Rayleigh’s damping matixpy assuming percentage of critical dampigy (
for all modes by using following equation.

C=a,M+ o, K (5.73)
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_ 28wqwy — 2%
o = w1t W2 anda, w1t W2 (5.74)

Step 5:
Derive the influence coefficient matrik,

For single support excitation, it may be obtaingdabranging ‘1’ and ‘0’ at proper places
corresponding to degrees of freedom as discussgddtion 5.5.

For multi support excitations, it may be calculatedusing Equation (5.47) as derived in
Section 5.6. It is rewritten as follows,

r = -k, 'K (5.75)

Step 6:

Generate the ground motion (generally, accelerptientor,x, corresponding to the support
degrees of freedom considering the effects of ek and the size df, will be ‘r x 1,
where ‘r' is number of support degrees of freedom.

Step 7:
Calculate the state transition matr; as discussed in previous sections.

Ay = et (5.76)
where, A= 0 ! (5.77)

_Mss_les _Mss_lcss
and ‘At’ is the time step considered corresponding totigoound motion.

For single support excitatiom,, = M, C,; = C, K, = K that means without considering the
coupling effects.

Step 8:
Calculate the state vectarfor each time stepit as follows,

) For Single-Support Excitation:

Ziyr = AgZe + Egkg (5.78)

where, E;= A1 (4;—- DE (5.79)
0nx1

and E= { ; } (5.80)
T nx1

(i) For Multi-Support Excitations:

Zipi1 = Ade+ Ed (581)
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Onx
where, E::{_ ot } (5.82)

The solution of above equation gives the respode®lative displacement and relative
velocity at super structure degrees of freedonobeis,

(X1

z=1< (5.83)

\X3/

Step 9:

Calculate the state vectarfor each time stepit as follows,
(1) For Single-Support Excitation:

Zyy1 = Az + EXg (5.84)
where,E is as defined in Step 8 (i).

(i) For Multi-Support Excitations:
Zyi1 = Azy+ E (5.85)
where,E is as defined in Step 8 (ii).

The solution of above equation gives the respondeselative velocity and relative
acceleration at super structure degrees of freefofallows,

(X1)

z=1{ "} (5.86)

\ X3/

Example 5.1 For the multi-bay portal frame as shown in Figwéa, calculate the
displacements;; and x, when subjected to El-Centro, 1940 (N-S componeatjhquake
ground motion for the following cases.

Case (i) Considering the same excitation at alpetis (uniform excitation)

Case (ii) Considering multi-support excitationshnat time delay of 5 s between supports
Assume percentage of critical damping as S%mn = 100 and all members are inextensible
and El values same for all members.
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Solution:

— X mée
k k k k 4k
= —x 2m@)
2k 2k 2k 2k 8k
/7777 /7777 /7777 /7777 /7777
_)x3 —)x4 _)xs _)x6
Figure 5.5 (a) A multi-bay portedme (b) Lumped mass model of frame

Calculation of General Elements :

Step 1: Generation of mass matrix
With the help of lumped mass assumption, the fraarebe represented as shown in Figure
5.5b and the mass matrix can be expressed as &llow

wfy

Step 2: Generation of stiffness matrix

The overall stiffness matrix for the given systema be calculated by considering the effects
of coupling between super structure and supponegsgof freedom. The stiffness influence
coefficients,k;; are derived to assemble the stiffness matrix. Whgris the force required

along degree of freedomgdue to unit displacement at degree of freedom,
(@) Imposing unit displacement at degree of freedgmelx; =1

To obtain the first column of the stiffness matiimposingx; = 1 and zero displacement at

all other degrees of freedom. The forces necesstthe top and bottom of each storey
corresponding to all degrees of freedom to maintiandeflected shape as shown in Figure
5.6a are expressed in terms of storey stiffnesses.

ki, = 4(2k)+4(k) = 12k

ky1 =-4k) =- 4k

k31 = ka1 =ksy =key =-2() =-2k

(b) Imposing unit displacement at degree of freedome2x, = 1

Similarly, to obtain the second column of the s&fs matrix, imposing, = 1 and zero
displacement at remaining degrees of freedom. dtee$ necessary at the top and bottom of
each storey corresponding to all degrees of freetdomaintain the deflected shape as shown
in Figure 5.6b are expressed as follows,

ki =-4() =- 4k

kyp = 4k) = 4k

k3z =kyp =ksy =kez =0

(c¢) Imposing unit displacement at degree of freedome3x; =1
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In the above similar manner, imposing= 1 and zero displacement at remaining degrees of
freedom. The forces as shown in Figure 5.6¢ areesspd as follows,

ki3 = -2k
k,3=0

kis = 2k

k43 =ks3 =kez =0

(d) Imposing unit displacement at degree of freedomedx, = 1
Similarly imposingx, = 1 and zero displacement at remaining degreeseeflom. The
forces as shown in Figure 5.6d are expressed lasvig|

kis = -2k
kyy =kss =0
kys = 2k
ksq =kesa =0

(e) Imposing unit displacement at degree of freedomebxs = 1

Now, imposingxs = 1 and zero displacement at remaining degreé®efom. The forces as
shown in Figure 5.6e are expressed as follows,

kys = -2k

ks =kss =kss =0
k55 = 2k

k65 =0

( Imposing unit displacement at degree of freedome6x, = 1

Finally, imposingx, = 1 and zero displacement at remaining degreéeeflom. The forces
as shown in Figure 5.6f are expressed as follows,

kig = -2k
ko =kse =kae =kse =0
keo = 2k

Here, for the considered frame, n = 2 and r = shddeassembling the above derived stiffness
influence coefficients to get the overall stiffnesatrix, Kr.

12k —4k 2k —2k —2k —2k
—4k 4k 0 0 0 0
Ko Keg) | Z2k770 12k 0 00T
Therefore, Ky == [Ké;"ika?é "2k 0 !0 2k 0 0
2k 0 0 0 2k O
2k 0 0 0 0 2k

Step 3: Generation of damping matrix

Assuming the Rayleigh’s mass and stiffness propoali damping and for that considering
critical damping§ =5 % in all modes. As per the given data consikler LOOON/m andm =

10 kg and from the eigen values analysis, the eigen gadnel hence natural frequencies are
obtained as follows,

w, = 14.1421 rad/sec an@d, = 28.2843 rad/sec.
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Further, the constants to derive the damping matixbe obtained as follows,

a
0 w1t wr

= B9 - 9428 and, =

w1t Wy

2 = 0.002357

ConsideringK = K, and using the Equation (5.73), the damping mataix lbe derived as

follows,
471405 —9.4281
C==a M+ a, K = [ ]
0 1 —9.4281 18.8562
x2 =
< ko T 5 ; l(, >
k \\ \\ \\ \\ k I,’ //I I/’ I/I
\\\ k \\\ k \\\ k \\‘ xl =1 II kl k,l k[/
,‘ .‘ ,‘ 1 ki < ki
2k |/ 2k|/ 2|/ 2K/
[TI77— /7777 /7777 /7777% [TI775= /7777 /7777 /7777
k31 k41 k51 k61 k32 k42 k52 k62
() (b)
_)kzg _)k24-
@k13 (_k14
2k, 2k [\,
TR T 7T = T Vtttamdlory andlorordundloyysians
k33 k43 k53 k63 k34 k44 k54 k64
X3 = 1
(c) X =1 (d)
szs _)k26
ks —ki6
2k |\, 2k |\
[TITT T = TR i [TIT7 T 777 17T
ks ks kss ks ks k4o ks kes
x5 =1 Xg=1
(e) (f)

Figure 5.6 A Frame with stiffness influence coaéits
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Case (i) Considering the single support (uniform)ecitation at all supports

m — x,
k k k k
2m —
2k 2k 2k 2k
/7777 /7777 /7777 /7777
—>x3 —)x4 —)x5 —)x6
>

Figure 5.7 A Frame subjected to single supporttation
For the system as shown in above figure, the egpusmbf motion can be written as follows,

Mi+ Cx+Kx =—-MIX,

[Z(r)n r(r)l] {2} + [a, M + a, K] {2} + 12k —dk {2}

U izmooqqn . T Ak
= [o m]{1}xg

Now, the system is subjected to uniform El-Centaathegjuake ground motion as shown in
Figure 5.8 (http://www.vibrationdata.com/elcentat)d, hencex, will be having size of
‘1x1’. The time stepAt is considered as 0.02 s. Assuime= 1000N/m andm = 10 kg.

Further, with the state space method using thetaohfrcing function method, the solution
of equations of motion can be obtained as follows,

0 0 1 0
a=| 0 I | = 0 0 0 1
-M—K -M~C 600 200 -2.3570 0.4714
400 -400 0.9428 -1.8856

0.8849 0.0378 0.0188 0.0003
Adt 0.0757 0.9228 0.0007 0.0191
-11.1235 3.6160 0.8410 0.0460
7.2319 -7.5075 0.0921 0.8871
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-0.000194
-0.000198
-0.019113
-0.019802

Ed =41 (Ad - I)E =

Zpiq = Ade+ degk and2k+1 = AZk + Exgk+1

By considering the above calculated matrices andatamns and assuming the initial
displacements and velocities as zero, the respquaatities for next time step are to be
calculated. Table 5.1 gives the response for fistime steps for relative displacements and
relative as well as absolute accelerations at ssipecture degrees of freedom. Note that

in this table is the absolute (total) acceleratbthe mass, which is equal to,

ut —_ ..
Xt =x+ 1xg

Table 5.1 Response of the system subjected to Eir@€earthquake

0.10101 0.09259 884H | 0.08003
0.045p7 0.06349 1388 0.09959
-0.01749 0.03143 672D | 0.11619

-0.0004
-0.0005
-0.0006

0.16 | -0.01256 -0.0003
0.18 | 0.03610f -0.0003
0.20 | 0.08476| -0.0003

Tg;e M) | x, (M) | x,m) | & ) | & D) | &t M) | % (mid)
0.00 | 0.06180] 0.00000 0.00000 -0.06180 -0.06180 00®O 0.00000
0.02| 0.03571] -0.0000L -0.00001 -0.02873 -0.0344200688 | 0.00129
0.04 | 0.00971] -0.00004 -0.00004 0.00806 -0.00654 18B8 | 0.00317
0.06 | 0.04199| -0.00007 -0.00008 -0.01362 -0.034#8902837 | 0.00710
0.08 | 0.07436] -0.00010 -0.00013 -0.03752 -0.0504503684 | 0.01491
0.10 | 0.10663| -0.00014 -0.00019 -0.05884 -0.07999047BO | 0.02665
0.12 | 0.06690] -0.00018 -0.00028 -0.00241 -0.02475064%9 | 0.04215
0.14 | 0.02717| -0.00026 -0.00039 0.05368 0.03295 08B 0.06013

i 9

3 6

3 0

Extending the above sample calculations up to 80gsees the entire time histories for the
responses. Figures 5.9 (a) and (b) show the tinstoriés of relative displacements
corresponding to the super structure degrees etii® 1 and 2 and similarly, Figures 5.10
(a) and (b) show the time histories of absolutekrations.
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0.3 -

0.2 —

Ground Acceleration (g)

-0.3}+ .

0.4 i L 1 L 1 L 1 L 1 L 1 L
0 5 10 15 20 25 30

Time (s)
Figures 5.8 Acceleration time history of EI-Centt®40 (N-S) earthquake
(http://www.vibrationdata.com/elcentro.dat)

0.03 T T T T T T T T T T
0.02 -
0.01 -
0.00 -

-0.01

-0.02- —

Displacementx, (m)

-0.03 —

0 5 10 15 20 25 30
Time (s)

(@)

0.06 T T T T T T T T T T

0.04 -
0.02
0.00

-0.02

Displacementx, (m)

-0.04} .

-0.06 . I . I . I . I . I .
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Time (s)
(b)
Figures 5.9 Time histories of relative displaceradn) displacement; ; and
(b) displacement,
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Absolute acceleration, f((m/sz)
d A NV o N M O ®

0 5 10 15 20 25 30

-0k 4

Absolute accelerationQ'x(m/sz)

.15 L 1 L 1 L 1 L 1 L 1 L
0 5 10 15 20 25 30

Time (s)
(b)
Figures 5.10 Time histories of absolute accelenati@) acceleratiork, ‘; and
(b) accelerationi,®
Case (ii) Considering the multi support excitations

m

— Xy
k k k k
2m —
2k 2k 2k 2k
/7777 /7777 /7777 /7777
—>x3 —)x4 —>x5 —>x6
«—> — — —
Xgl fgz 5&93 Xg4

Figure 5.11 A Frame subjected to multi support texicin
For the system as shown in figure 5.11, the egusitod motion can be written as follows,

Mg %+ Co &k + Koy x = —M Tk,

As derived earlier, the influence coefficient matlfi can be calculated as follows,

r=—kg g =_[12k —4k]‘1 [—Zk —2k —2k —2k] _ [0.25 0.25 0.25 0.25]
s g T a4k 4k 0 0 0 0 0.25 0.25 0.25 0.25
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For the given system, the four supports are sudgetd earthquake excitation with time
delay. Hence, there will be four component of aa@lon in the vector of earthquake ground
motion as follows.

(¥or)

. Xg2
Xg = 9
Xg3

\%g4)

Hence, the equations of motion for this system wwitkiti support excitation can be written as
follows,

om 07(% %) | [12k  —4k] (*1
[0 m”a’c‘z}+[a°M+a1K]{xz}+ —4k 4k {xz}

xgl
xgz
%

g3
Lxg‘*

Considering the Time Delay Effect in Earthquake Ground Motion:

(
_ [Zm 0”0.25 0.25 0.25 0.25 i
B 0 mlilo.25 0.25 0.25 0.25

—_—

The given system is subjected to EI-Centro eartkejgmound motion of total duration of 30
s. The time delay between two supports is giverd & the total duration of earthquake
records forky, , X4, , ¥43 andiy, is to be considered as 45 s with details for iinlials as
follows.

for &,4 :

gl
The record of¢,; will have, the first 30 s as the actual El Cemtzoord and the last 15 s of
the record will consists zeros.

for X, :

g2
The record of¢,, will have, the first 5 s record values as zerdi®¥eed by 30 s of the actual
El Centro record and the last 10 s of the recotboensists again the zeros.

for Xy :
The record ofi,; will have, the first 10 s record values as zew®wed by 30 s of the
actual El Centro record and the last 5 s of thencewill consists again the zeros.

for ¥,4 :

g4
The record ofi,, will have, the first 15 s record values as zewloived by 30 s of the
actual El Centro record as last values.

Now, the system is subjected to multi support EM@eearthquake ground motion as shown
in Figure 5.12, hence as discussed eatligrwill be having size of ‘41’. The time stepAt

is considered as 0.02 s. Assuine 1000N/m andm = 10kg. Using the state space method
with constant forcing function method, the solutadrequations of motion can be obtained as
follows.
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Figures 5.12 Acceleration time history of EI-Centt840 earthquake for four supports with
time delay of 5 s between supports

The matricesA and A, will be exactly same as those obtained for the ¢agee. for single
support excitation).

0
-1 Onxl 0
Ed = A (Ad - I)E y whereE = {_Fxgnxl} = J—OZS (jégl + jégZ + .7.C.g3 + xg4l
—0.25 (igy + iy + igs + g

Zii1 = Ade+ Ed and2k+1 = AZk+ E

By considering the above equations and assumingnitieé displacements and velocities as
zero, the response quantities for next time steptarbe calculated. Table 5.2 gives the
response for first 10 time steps for relative dispinents and relative as well as absolute
accelerations at super structure degrees of freetlme thatit in this table is the absolute
(total) acceleration of the mass, which is equal to

t_.. e
xt=x+ I"xg
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Table 5.2 Response of the system subjected to EI-Centro earthquake

xgz =
Time (s) | ¥g1 (M/S) | g5 = g4 x; (M) x5 (M) ¥ (M) | %MD | 5 (md | (M)

(m/S)
0.00 0.06180 0.00000] 0.00000000  0.00000G00  -0.015480.01545 | 0.00000 0.00000
0.02 0.03571 0.00000] -0.00000301 -0.00000307 -A.®0F -0.00861| 0.00174 0.00037
0.04 0.00971 0.00000] -0.00001017 -0.00001089 04022 -0.00163 | 0.00467 0.00079
0.06 0.04199 0.00000] -0.00001776 -0.00002064 -@DOB -0.00872 | 0.00709 0.00177
0.08 0.07436 0.00000] -0.00002509 -0.00003224 -G®0D -0.01486 | 0.00921 0.00373
0.10 0.10663 0.00000] -0.0000345%3 -0.00004812 -GD1k -0.02000 | 0.01195 0.00666
0.12 0.06690 0.00000] -0.00004818 -0.00007035 -GBOOD -0.00619 | 0.01612 0.01054
0.14 0.02717 0.00000] -0.00006407 -0.00009703  0D134 0.00824 0.02021 0.01503
0.16 -0.01256| 0.00000] -0.00007667 -0.00012239 @®2% 0.02315 0.02211 0.02001
0.18 0.03610 0.00000] -0.00008129 -0.00014048 02113 0.01587 0.02034 0.0249(
0.20 0.08476 0.00000] -0.00007899 -0.00014981 -BDOA 0.00786 0.01682 0.02905

Further, extending the above sample calculations up to 45 sec givestitieetime histories
for the responses. Figures 5.13 (a) and (b) show the time histonelstofe displacements
corresponding to the super structure degrees of freedom 1 and 2 amad\sifigures 5.14
(a) and (b) show the time histories of absolute accelerations.
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Figures 5.13 Time histories of relative displacetada) displacement; ; and
(b) displacementy,
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Exercise Problem

Example 1 For the portal frame as shown in Figure 5.15;udate the peak and RMS values
of relative displacements and absolute accelemtmrresponding to the super structure
degrees of freedom. (i.e, andx,) when subjected to El-Centro earthquake groundamot
for the following cases.

Case (i) Considering the same excitation at alpetis (uniform excitation)

Case (ii) Considering multi-support excitationshndt time delay of 5 s between supports
Assume percentage of critical damping as %%,2000 N/m anan = 50.

m — x,
k k
m
e X1
3k 4k
/7777 /7777
X3 Xy
Figure 5.15
Answer 1:
Case (i)
Response quantities Peak values RMS values
Relative displacement at levela,;, (m) 0.0291 0.0077
Relative displacement at levels2, (m) 0.1073 0.0139
Absolute acceleration at level i, (m/<) 6.0421 1.1364
Absolute acceleration at level 2, (m/<) 6.4195 1.6229
Case (ii)
Response quantities Peak values RMS values
Relative displacement at levela,;, (m) 0.0191 0.0051
Relative displacement at levels2, (m) 0.0622 0.0094
Absolute acceleration at level i, (m/<) 3.3174 0.6371
Absolute acceleration at level 2, (m/<) 3.7429 1.0894
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